AoPS Community

2015 Japan MO Finals

www.artofproblemsolving.com/community/c255381

by maple116, parmenides51, Kunihiko_Chikaya, buzzychaoz, ksun48

1 Find all positive integers n such that $\frac{10^{n}}{n^{3}+n^{2}+n+1}$ is an integer.
2 Let n be an integer greater than or equal to 2 . There is a regular hexagon $A B C D E F$ with side length n, which is divided into equilateral triangles with side length 1 as shown in the left figure. We simply call the vertices of an equilateral triangle as vertex.
A piece is placed in the center of a regular hexagon $A B C D E F$. For each of the vertices P inside $A B C D E F$ (not including the perimeter), an arrow is drawn toward 4 vertices four of the six vertices connected to P by an edge of length 1 . When a piece is placed on the vertex P, this piece can be moved to any of the four vertices which the arrow is drawn. Regarding side $P Q$, even if a piece can be moved from vertex P to vertex Q, it is not necessarily possible to move a piece from vertex Q to vertex P.
Then, show that there exists an integer k such that it can be moved the piece to vertices on the perimeter of the regular hexagon $A B C D E F$ in k moves regardless of how the arrows are drawn and find the smallest possible value of k.

3 A sequence $\left\{a_{n}\right\}_{n \geq 1}$ of positive integers is called ascending if a_{n} satisfies $a_{n}<a_{n+1}$ and $a_{2 n}=$ $2 a_{n}$.
(1) Let $\left\{a_{n}\right\}$ be ascending. If p is a prime greater than a_{1}, then prove that there exists a multiple of p in the sequence.
(2) Let p be an odd prime. Prove that there exists a sequence $\left\{a_{n}\right\}$ which is ascending and has no multiple of p.

4 Scalene triangle $A B C$ has circumcircle Γ and incenter I. The incircle of triangle $A B C$ touches side $A B, A C$ at D, E respectively. Circumcircle of triangle $B E I$ intersects Γ again at P distinct from B, circumcircle of triangle $C D I$ intersects Γ again at Q distinct from C. Prove that the 4 points D, E, P, Q are concyclic.
$5 \quad$ Let a be a fixed positive integer. For a given positive integer n, consider the following assertion. In an infinite two-dimensional grid of squares, n different cells are colored black. Let K denote the number of a by a squares in the grid containing exactly a black cells. Then over all possible choices of the n black cells, the maximum possible K is $a(n+1-a)$.
Prove that there exists a positive integer N such that for all $n \geq N$, this assertion is true.
(link is http://www.imojp.org/challenge/old/jmo25mq.html for anyone who wants to correct my translation)

