Art of Problem Solving
www.artofproblemsolving.com/community/c255382
by buzzychaoz, Kunihiko_Chikaya

1 Let p be an odd prime number. For positive integer k satisfying $1 \leq k \leq p-1$, the number of divisors of $k p+1$ between k and p exclusive is a_{k}. Find the value of $a_{1}+a_{2}+\ldots+a_{p-1}$.

2 Let $A B C D$ be a concyclic quadrilateral such that $A B: A D=C D: C B$. The line $A D$ intersects the line $B C$ at X, and the line $A B$ intersects the line $C D$ at Y. Let E, F, G and H are the midpoints of the edges $A B, B C, C D$ and $D A$ respectively. The bisector of angle $A X B$ intersects the segment $E G$ at S, and that of angle $A Y D$ intersects the segment $F H$ at T. Prove that the lines $S T$ and $B D$ are pararell.

3 Let n be a positive integer. In JMO kingdom there are 2^{n} citizens and a king. In terms of currency, the kingdom uses paper bills with value $\$ 2^{n}$ and coins with value $\$ 2^{a}(a=0,1 \ldots, n-1)$. Every citizen has infinitely many paper bills. Let the total number of coins in the kingdom be S. One fine day, the king decided to implement a policy which is to be carried out every night: - Each citizen must decide on a finite amount of money based on the coins that he currently has, and he must pass that amount to either another citizen or the king;
-Each citizen must pass exactly \$1 more than the amount he received from other citizens.
Find the minimum value of S such that the king will be able to collect money every night eternally.
$4 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(y f(x)-x)=f(x) f(y)+2 x
$$

for all $x, y \in \mathbb{R}$.
$5 \quad m, n$ are positive integers such that $m \geq 2, n<\frac{3}{2}(m-1)$. In a country there are m cities and n roads, each road connect two different cities, and there can be multiple roads between two cities. Prove that there exist a way to separate the cities into two groups α and β, where all roads connecting a city in α to a city in β is converted to a highway, and satisfies the following conditions:
-Both groups have at least one city, and
-for each city, the number of highways coming out from that city does not exceed 1.

