AoPS Community

1995 Israel Mathematical Olympiad

www.artofproblemsolving.com/community/c255566
by parmenides51, YanYau

1 Solve the system $x+\log \left(x+\sqrt{x^{2}+1}\right)=y y+\log \left(y+\sqrt{y^{2}+1}\right)=z z+\log \left(z+\sqrt{z^{2}+1}\right)=$ x

2 Let $P Q$ be the diameter of semicircle H. Circle O is internally tangent to H and tangent to $P Q$ at C. Let A be a point on H and B a point on $P Q$ such that $A B \perp P Q$ and is tangent to O. Prove that $A C$ bisects $\angle P A B$

3 If k and n are positive integers, prove the inequality

$$
\frac{1}{k n}+\frac{1}{k n+1}+\ldots+\frac{1}{(k+1) n-1} \geq n\left(\sqrt[n]{\frac{k+1}{k}}-1\right)
$$

$4 \quad$ Find all integers m and n satisfying $m^{3}-n^{3}-9 m n=27$.
5 Let n be an odd positive integer and let $x_{1}, x_{2}, \ldots, x_{n}$ be n distinct real numbers that satisfy $\left|x_{i}-x_{j}\right| \leq 1$ for $1 \leq i<j \leq n$. Prove that

$$
\sum_{i<j}\left|x_{i}-x_{j}\right| \leq\left[\frac{n}{2}\right]\left(\left[\frac{n}{2}\right]-1\right)
$$

6 A 1995×1995 square board is given. A coloring of the cells of the board is called good if the cells can be rearranged so as to produce a colored square board that is symmetric with respect to the main diagonal. Find all values of k for which any k-coloring of the given board is good.
$7 \quad$ For certain n countries there is an airline connecting any two countries, but some of the airlines are closed. Show that if the number of the closed airlines does not exceed $n-3$, then one can make a round trip using the remaining airlines, starting from one of the countries, visiting every country exactly once and returning to the starting country.
$8 \quad$ A real number α is given. Find all functions $f: R^{+} \rightarrow R^{+}$satisfying $\alpha x^{2} f\left(\frac{1}{x}\right)+f(x)=\frac{x}{x+1}$ for all $x>0$.

