

AoPS Community

1995 Israel Mathematical Olympiad

1995 Israel Mathematical Olympiad

www.artofproblemsolving.com/community/c255566 by parmenides51, YanYau

1	Solve the system $x + \log x$	$(x + \sqrt{x^2 + 1})$	$= y y + \log y$	$(y + \sqrt{y^2 + 1})$	$= z z + \log ($	$(z + \sqrt{z^2 + 1})$) =
	x			\		· /	

- **2** Let PQ be the diameter of semicircle H. Circle O is internally tangent to H and tangent to PQ at C. Let A be a point on H and B a point on PQ such that $AB \perp PQ$ and is tangent to O. Prove that AC bisects $\angle PAB$
- **3** If *k* and *n* are positive integers, prove the inequality

$$\frac{1}{kn} + \frac{1}{kn+1} + \dots + \frac{1}{(k+1)n-1} \ge n\left(\sqrt[n]{\frac{k+1}{k}} - 1\right)$$

- **4** Find all integers m and n satisfying $m^3 n^3 9mn = 27$.
- **5** Let *n* be an odd positive integer and let $x_1, x_2, ..., x_n$ be n distinct real numbers that satisfy $|x_i x_j| \le 1$ for $1 \le i < j \le n$. Prove that

$$\sum_{i < j} |x_i - x_j| \le \left[\frac{n}{2}\right] \left(\left[\frac{n}{2}\right] - 1\right)$$

- 6 A 1995×1995 square board is given. A coloring of the cells of the board is called *good* if the cells can be rearranged so as to produce a colored square board that is symmetric with respect to the main diagonal. Find all values of k for which any k-coloring of the given board is *good*.
- **7** For certain *n* countries there is an airline connecting any two countries, but some of the airlines are closed. Show that if the number of the closed airlines does not exceed n-3, then one can make a round trip using the remaining airlines, starting from one of the countries, visiting every country exactly once and returning to the starting country.
- 8 A real number α is given. Find all functions $f: R^+ \to R^+$ satisfying $\alpha x^2 f\left(\frac{1}{x}\right) + f(x) = \frac{x}{x+1}$ for all x > 0.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.