AoPS Community

Finals 2016

www.artofproblemsolving.com/community/c255814 by gavrilos, Pinionrzek

- Day 1

1 Let p be a certain prime number. Find all non-negative integers n for which polynomial $P(x)=$ $x^{4}-2(n+p) x^{2}+(n-p)^{2}$ may be rewritten as product of two quadratic polynomials $P_{1}, P_{2} \in$ $\mathbb{Z}[X]$.

2 Let $A B C D$ be a quadrilateral circumscribed on the circle ω with center I. Assume $\angle B A D+$ $\angle A D C<\pi$. Let M, N be points of tangency of ω with $A B, C D$ respectively. Consider a point $K \in M N$ such that $A K=A M$. Prove that $I D$ bisects the segment $K N$.

3 Let $a, b \in \mathbb{Z}_{+}$. Denote $f(a, b)$ the number sequences $s_{1}, s_{2}, \ldots, s_{a}, s_{i} \in \mathbb{Z}$ such that $\left|s_{1}\right|+\left|s_{2}\right|+$ $\ldots+\left|s_{a}\right| \leq b$. Show that $f(a, b)=f(b, a)$.

- Day2

4 Let k, n be odd positve integers greater than 1 . Prove that if there a exists natural number a such that $k\left|2^{a}+1, n\right| 2^{a}-1$, then there is no natural number b satisfying $k\left|2^{b}-1, n\right| 2^{b}+1$.

5 There are given two positive real number $a<b$. Show that there exist positive integers p, q, r, s satisfying following conditions: $1 . a<\frac{p}{q}<\frac{r}{s}<b .2 . p^{2}+q^{2}=r^{2}+s^{2}$.
$6 \quad$ Let I be an incenter of $\triangle A B C$. Denote $D, S \neq A$ intersections of $A I$ with $B C, O(A B C)$ respectively. Let K, L be incenters of $\triangle D S B, \triangle D C S$. Let P be a reflection of I with the respect to $K L$. Prove that $B P \perp C P$.

