

AoPS Community

2016 Polish MO Finals

Finals 2016

www.artofproblemsolving.com/community/c255814 by gavrilos, Pinionrzek

-	Day 1
1	Let p be a certain prime number. Find all non-negative integers n for which polynomial $P(x) = x^4 - 2(n+p)x^2 + (n-p)^2$ may be rewritten as product of two quadratic polynomials $P_1, P_2 \in \mathbb{Z}[X]$.
2	Let $ABCD$ be a quadrilateral circumscribed on the circle ω with center <i>I</i> . Assume $\angle BAD + \angle ADC < \pi$. Let <i>M</i> , <i>N</i> be points of tangency of ω with <i>AB</i> , <i>CD</i> respectively. Consider a point $K \in MN$ such that $AK = AM$. Prove that <i>ID</i> bisects the segment <i>KN</i> .
3	Let $a, b \in \mathbb{Z}_+$. Denote $f(a, b)$ the number sequences $s_1, s_2,, s_a, s_i \in \mathbb{Z}$ such that $ s_1 + s_2 + + s_a \le b$. Show that $f(a, b) = f(b, a)$.
_	Day2
4	Let k, n be odd positve integers greater than 1. Prove that if there a exists natural number a such that $k 2^a + 1, n 2^a - 1$, then there is no natural number b satisfying $k 2^b - 1, n 2^b + 1$.
5	There are given two positive real number $a < b$. Show that there exist positive integers p, q, r, s satisfying following conditions: 1. $a < \frac{p}{q} < \frac{r}{s} < b$. 2. $p^2 + q^2 = r^2 + s^2$.
6	Let <i>I</i> be an incenter of $\triangle ABC$. Denote <i>D</i> , $S \neq A$ intersections of <i>AI</i> with <i>BC</i> , <i>O</i> (<i>ABC</i>) respectively. Let <i>K</i> , <i>L</i> be incenters of $\triangle DSB$, $\triangle DCS$. Let <i>P</i> be a reflection of <i>I</i> with the respect to <i>KL</i> . Prove that $BP \perp CP$.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.