AoPS Community

Turkey Team Selection Test 2016

www.artofproblemsolving.com/community/c256440
by Eray, mberke

Day 1 April 2nd

1 In an acute triangle $A B C$, a point P is taken on the A-altitude. Lines $B P$ and $C P$ intersect the sides $A C$ and $A B$ at points D and E, respectively. Tangents drawn from points D and E to the circumcircle of triangle $B P C$ are tangent to it at points K and L, respectively, which are in the interior of triangle $A B C$. Line $K D$ intersects the circumcircle of triangle $A K C$ at point M for the second time, and line $L E$ intersects the circumcircle of triangle $A L B$ at point N for the second time. Prove that

$$
\frac{K D}{M D}=\frac{L E}{N E} \Longleftrightarrow \text { Point } \mathrm{P} \text { is the orthocenter of triangle } \mathrm{ABC}
$$

2 In a class with 23 students, each pair of students have watched a movie together. Let the set of movies watched by a student be his movie collection. If every student has watched every movie at most once, at least how many different movie collections can these students have?

3 Let a, b, c be non-negative real numbers such that $a^{2}+b^{2}+c^{2} \leq 3$ then prove that;

$$
(a+b+c)(a+b+c-a b c) \geq 2\left(a^{2} b+b^{2} c+c^{2} a\right)
$$

Day 2 April 3rd
4 A sequence of real numbers a_{0}, a_{1}, \ldots satisfies the condition

$$
\sum_{n=0}^{m} a_{n} \cdot(-1)^{n} \cdot\binom{m}{n}=0
$$

for all large enough positive integers m. Prove that there exists a polynomial P such that $a_{n}=$ $P(n)$ for all $n \geq 0$.
$5 \quad$ Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $m, n \in \mathbb{N}$ holds $f(m n)=f(m) f(n)$ and $m+n \mid$ $f(m)+f(n)$.

6 In a triangle $A B C$ with $A B=A C$, let D be the midpoint of [$B C]$. A line passing through D intersects $A B$ at $K, A C$ at L. A point E on $[B C]$ different from D, and a point P on $A E$ is taken
such that $\angle K P L=90^{\circ}-\frac{1}{2} \angle K A L$ and E lies between A and P. The circumcircle of triangle $P D E$ intersects $P K$ at point $X, P L$ at point Y for the second time. Lines $D X$ and $A B$ intersect at M, and lines $D Y$ and $A C$ intersect at N. Prove that the points P, M, A, N are concyclic.

Day 3 April 4th

$7 A_{1}, A_{2}, \ldots A_{k}$ are different subsets of the set $\{1,2, \ldots, 2016\}$. If $A_{i} \cap A_{j}$ forms an arithmetic sequence for all $1 \leq i<j \leq k$, what is the maximum value of k ?

8 All angles of the convex n-gon $A_{1} A_{2} \ldots A_{n}$ are obtuse, where $n \geq 5$. For all $1 \leq i \leq n, O_{i}$ is the circumcenter of triangle $A_{i-1} A_{i} A_{i+1}$ (where $A_{0}=A_{n}$ and $A_{n+1}=A_{1}$). Prove that the closed path $O_{1} O_{2} \ldots O_{n}$ doesn't form a convex n-gon.
$9 \quad p$ is a prime. Let K_{p} be the set of all polynomials with coefficients from the set $\{0,1, \ldots, p-1\}$ and degree less than p. Assume that for all pairs of polynomials $P, Q \in K_{p}$ such that $P(Q(n)) \equiv$ $n(\bmod p)$ for all integers n, the degrees of P and Q are equal. Determine all primes p with this condition.

