2021 CIIM

AoPS Community

www.artofproblemsolving.com/community/c2580108

by mathematics2004, mathisreal

1 For every $0 < \alpha < 1$, let $R(\alpha)$ be the region in \mathbb{R}^2 whose boundary is the convex pentagon of vertices $(0, 1 - \alpha), (\alpha, 0), (1, 0), (1, 1)$ and (0, 1). Let R be the set of points that belong simultaneously to each of the regions $R(\alpha)$ with $0 < \alpha < 1$, that is, $R = \bigcap_{0 < \alpha < 1} R(\alpha)$.

Determine the area of R.

- 2 Let r > s be positive integers. Let P(x) and Q(x) be distinct polynomials with real coefficients, non-constant(s), such that $P(x)^r P(x)^s = Q(x)^r Q(x)^s$ for every $x \in \mathbb{R}$. Prove that (r, s) = (2, 1).
- **3** Let m, n and N be positive integers and $\mathbb{Z}_N = \{0, 1, \dots, N-1\}$ a set of residues modulo N. Consider a table $m \times n$ such that each one of the mn cells has an element of \mathbb{Z}_N . A move is choose an element $g \in \mathbb{Z}_N$, a cell in the table and add +g to the elements in the same row/column of the chosen cell(the sum is modulo N). Prove that if N is coprime with m-1, n-1, m+n-1 then any initial arrangement of your elements in the table cells can become any other arrangement using an finite quantity of moves.
- 4 Let Z⁺ be the set of positive integers.
 a) Prove that there is only one function f : Z⁺ → Z⁺, strictly increasing, such that f(f(n)) = 2n + 1 for every n ∈ Z⁺.
 b) For the function in a. Prove that for every n ∈ Z⁺ 4n+1/3 ≤ f(n) ≤ 3n+1/2
 - c) Prove that in each inequality side of **b** the equality can reach by infinite positive integers *n*.
- **5** For every positive integer n, let s(n) be the sum of the exponents of 71 and 97 in the prime factorization of n; for example, $s(2021) = s(43 \cdot 47) = 0$ and $s(488977) = s(71^2 \cdot 97) = 3$. If we define $f(n) = (-1)^{s(n)}$, prove that the limit

$$\lim_{n \to +\infty} \frac{f(1) + f(2) + \dots + f(n)}{n}$$

exists and determine its value.

6 Let $0 \le a < b$ be real numbers. Prove that there is no continuous function $f : [a, b] \to \mathbb{R}$ such that

$$\int_{a}^{b} f(x)x^{2n} \mathrm{d}x > 0 \quad \text{and} \quad \int_{a}^{b} f(x)x^{2n+1} \mathrm{d}x < 0$$

for every integer $n \ge 0$.

🟟 AoPS Online 🟟 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.