www.artofproblemsolving.com/community/c2580108
by mathematics2004, mathisreal

1 For every $0<\alpha<1$, let $R(\alpha)$ be the region in \mathbb{R}^{2} whose boundary is the convex pentagon of vertices $(0,1-\alpha),(\alpha, 0),(1,0),(1,1)$ and $(0,1)$. Let R be the set of points that belong simultaneously to each of the regions $R(\alpha)$ with $0<\alpha<1$, that is, $R=\bigcap_{0<\alpha<1} R(\alpha)$.
Determine the area of R.
2 Let $r>s$ be positive integers. Let $P(x)$ and $Q(x)$ be distinct polynomials with real coefficients, non-constant(s), such that $P(x)^{r}-P(x)^{s}=Q(x)^{r}-Q(x)^{s}$ for every $x \in \mathbb{R}$.
Prove that $(r, s)=(2,1)$.
3 Let m, n and N be positive integers and $\mathbb{Z}_{N}=\{0,1, \ldots, N-1\}$ a set of residues modulo N. Consider a table $m \times n$ such that each one of the $m n$ cells has an element of \mathbb{Z}_{N}. A move is choose an element $g \in \mathbb{Z}_{N}$, a cell in the table and add $+g$ to the elements in the same row/column of the chosen cell(the sum is modulo N). Prove that if N is coprime with $m-1, n-1, m+n-1$ then any initial arrangement of your elements in the table cells can become any other arrangement using an finite quantity of moves.
$4 \quad$ Let \mathbb{Z}^{+}be the set of positive integers.
a) Prove that there is only one function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, strictly increasing, such that $f(f(n))=$ $2 n+1$ for every $n \in \mathbb{Z}^{+}$.
b) For the function in a. Prove that for every $n \in \mathbb{Z}^{+} \frac{4 n+1}{3} \leq f(n) \leq \frac{3 n+1}{2}$
c) Prove that in each inequality side of \mathbf{b} the equality can reach by infinite positive integers n.

5 For every positive integer n, let $s(n)$ be the sum of the exponents of 71 and 97 in the prime factorization of n; for example, $s(2021)=s(43 \cdot 47)=0$ and $s(488977)=s\left(71^{2} \cdot 97\right)=3$. If we define $f(n)=(-1)^{s(n)}$, prove that the limit

$$
\lim _{n \rightarrow+\infty} \frac{f(1)+f(2)+\cdots+f(n)}{n}
$$

exists and determine its value.
$6 \quad$ Let $0 \leq a<b$ be real numbers. Prove that there is no continuous function $f:[a, b] \rightarrow \mathbb{R}$ such that

$$
\int_{a}^{b} f(x) x^{2 n} \mathrm{~d} x>0 \quad \text { and } \quad \int_{a}^{b} f(x) x^{2 n+1} \mathrm{~d} x<0
$$

for every integer $n \geq 0$.

