Art of Problem Solving

USA TST Selection Test 2021

www.artofproblemsolving.com/community/c2582544
by nukelauncher, pad, AwesomeYRY

Day 1 November 4, 2021
1 Let $A B C D$ be a quadrilateral inscribed in a circle with center O. Points X and Y lie on sides $A B$ and $C D$, respectively. Suppose the circumcircles of $A D X$ and $B C Y$ meet line $X Y$ again at P and Q, respectively. Show that $O P=O Q$.

Holden Mui
2 Let $a_{1}<a_{2}<a_{3}<a_{4}<\cdots$ be an infinite sequence of real numbers in the interval $(0,1)$. Show that there exists a number that occurs exactly once in the sequence

$$
\frac{a_{1}}{1}, \frac{a_{2}}{2}, \frac{a_{3}}{3}, \frac{a_{4}}{4}, \ldots
$$

Merlijn Staps

3 Find all positive integers $k>1$ for which there exists a positive integer n such that $\binom{n}{k}$ is divisible by n, and $\binom{n}{m}$ is not divisible by n for $2 \leq m<k$.
Merlijn Staps
Day 2 December 9, 2021
$4 \quad$ Let a and b be positive integers. Suppose that there are infinitely many pairs of positive integers (m, n) for which $m^{2}+a n+b$ and $n^{2}+a m+b$ are both perfect squares. Prove that a divides $2 b$.

Holden Mui

$5 \quad$ Let T be a tree on n vertices with exactly k leaves. Suppose that there exists a subset of at least $\frac{n+k-1}{2}$ vertices of T, no two of which are adjacent. Show that the longest path in T contains an even number of edges. A tree is a connected graph with no cycles. A leaf is a vertex of degree 1

Vincent Huang

$6 \quad$ Triangles $A B C$ and $D E F$ share circumcircle Ω and incircle ω so that points A, F, B, D, C, and E occur in this order along Ω. Let Δ_{A} be the triangle formed by lines $A B, A C$, and $E F$, and define triangles $\Delta_{B}, \Delta_{C}, \ldots, \Delta_{F}$ similarly. Furthermore, let Ω_{A} and ω_{A} be the circumcircle and incircle of triangle Δ_{A}, respectively, and define circles $\Omega_{B}, \omega_{B}, \ldots, \Omega_{F}, \omega_{F}$ similarly.
(a) Prove that the two common external tangents to circles Ω_{A} and Ω_{D} and the two common external tangents to ω_{A} and ω_{D} are either concurrent or pairwise parallel.
(b) Suppose that these four lines meet at point T_{A}, and define points T_{B} and T_{C} similarly. Prove that points T_{A}, T_{B}, and T_{C} are collinear.

Nikolai Beluhov

Day 3 January 13, 2022

$7 \quad$ Let M be a finite set of lattice points and n be a positive integer. A mine-avoiding path is a path of lattice points with length n, beginning at $(0,0)$ and ending at a point on the line $x+y=n$, that does not contain any point in M. Prove that if there exists a mine-avoiding path, then there exist at least $2^{n-|M|}$ mine-avoiding paths. A lattice point is a point (x, y) where x and y are integers. A path of lattice points with length n is a sequence of lattice points $P_{0}, P_{1}, \ldots, P_{n}$ in which any two adjacent points in the sequence have distance 1 from each other.

Ankit Bisain and Holden Mui

8 Let $A B C$ be a scalene triangle. Points A_{1}, B_{1} and C_{1} are chosen on segments $B C, C A$ and $A B$, respectively, such that $\triangle A_{1} B_{1} C_{1}$ and $\triangle A B C$ are similar. Let A_{2} be the unique point on line $B_{1} C_{1}$ such that $A A_{2}=A_{1} A_{2}$. Points B_{2} and C_{2} are defined similarly. Prove that $\triangle A_{2} B_{2} C_{2}$ and $\triangle A B C$ are similar.
Fedir Yudin
9 Let $q=p^{r}$ for a prime number p and positive integer r. Let $\zeta=e^{\frac{2 \pi i}{q}}$. Find the least positive integer n such that

$$
\sum_{\substack{1 \leq k \leq q \\ \operatorname{gcd}(k, p)=1}} \frac{1}{\left(1-\zeta^{k}\right)^{n}}
$$

is not an integer. (The sum is over all $1 \leq k \leq q$ with p not dividing k.)
Victor Wang

