

AoPS Community

2016 USAJMO

USAJMO 2016

www.artofproblemsolving.com/community/c259907

by adihaya, tenniskidperson3, v_Enhance, NormanWho, EulerMacaroni, rrusczyk

Day 1 April 19th

1 The isosceles triangle $\triangle ABC$, with AB = AC, is inscribed in the circle ω . Let *P* be a variable point on the arc BC that does not contain *A*, and let I_B and I_C denote the incenters of triangles $\triangle ABP$ and $\triangle ACP$, respectively.

Prove that as *P* varies, the circumcircle of triangle $\triangle PI_BI_C$ passes through a fixed point.

2 Prove that there exists a positive integer $n < 10^6$ such that 5^n has six consecutive zeros in its decimal representation.

Proposed by Evan Chen

3 Let $X_1, X_2, \ldots, X_{100}$ be a sequence of mutually distinct nonempty subsets of a set *S*. Any two sets X_i and X_{i+1} are disjoint and their union is not the whole set *S*, that is, $X_i \cap X_{i+1} = \emptyset$ and $X_i \cup X_{i+1} \neq S$, for all $i \in \{1, \ldots, 99\}$. Find the smallest possible number of elements in *S*.

Day 2 April 20th

- **4** Find, with proof, the least integer N such that if any 2016 elements are removed from the set 1, 2, ..., N, one can still find 2016 distinct numbers among the remaining elements with sum N.
- 5 Let $\triangle ABC$ be an acute triangle, with O as its circumcenter. Point H is the foot of the perpendicular from A to line \overrightarrow{BC} , and points P and Q are the feet of the perpendiculars from H to the lines \overrightarrow{AB} and \overrightarrow{AC} , respectively.

Given that

$$AH^2 = 2 \cdot AO^2,$$

prove that the points O, P, and Q are collinear.

6 Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all real numbers x and y,

 $(f(x) + xy) \cdot f(x - 3y) + (f(y) + xy) \cdot f(3x - y) = (f(x + y))^2.$

 https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

🟟 AoPS Online 🔯 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.