2021 Indonesia MO

AoPS Community

National Science Olympiad 2021

www.artofproblemsolving.com/community/c2608438 by parmenides51, GorgonMathDota

– Day 1	
---------	--

- 1 On the whiteboard, the numbers are written sequentially: $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$. And has to paste a + (plus) sign or (minus) sign in between every two successive numbers, and compute the value. Determine the least odd positive integer that Andi can't get from this process.
- **2** Let ABC be an acute triangle. Let D and E be the midpoint of segment AB and AC respectively. Suppose L_1 and L_2 are circumcircle of triangle ABC and ADE respectively. CD intersects L_1 and L_2 at $M(M \neq C)$ and $N(N \neq D)$. If DM = DN, prove that $\triangle ABC$ is isosceles.
- **3** A natural number is called a *prime power* if that number can be expressed as p^n for some prime p and natural number n. Determine the largest possible n such that there exists a sequence of prime powers a_1, a_2, \ldots, a_n

such that $a_i = a_{i-1} + a_{i-2}$ for all $3 \le i \le n$.

4 Let x, y and z be positive reals such that x + y + z = 3. Prove that

$$2\sqrt{x + \sqrt{y}} + 2\sqrt{y + \sqrt{z}} + 2\sqrt{z + \sqrt{x}} \le \sqrt{8 + x - y} + \sqrt{8 + y - z} + \sqrt{8 + z - x}$$

-	Day 2
5	Let $P(x) = x^2 + rx + s$ be a polynomial with real coefficients. Suppose $P(x)$ has two distinct real roots, both of which are less than -1 and the difference between the two is less than 2. Prove that $P(P(x)) > 0$ for all real x .
6	There are <i>n</i> natural numbers written on the board. Every move, we could erase <i>a</i> , <i>b</i> and change it to $gcd(a, b)$ and $lcm(a, b) - gcd(a, b)$. Prove that in finite number of moves, all numbers in the board could be made to be equal.
7	Given $\triangle ABC$ with circumcircle ℓ . Point M in $\triangle ABC$ such that AM is the angle bisector of $\angle BAC$. Circle with center M and radius MB intersects ℓ and BC at D and E respectively, $(B \neq D, B \neq E)$. Let P be the midpoint of arc BC in ℓ that didn't have A . Prove that AP angle bisector of $\angle DPE$ if and only if $\angle B = 90^{\circ}$.

8 On a 100×100 chessboard, the plan is to place several 1×3 boards and 3×1 board, so that

AoPS Community

- Each tile of the initial chessboard is covered by at most one small board.
- The boards cover the entire chessboard tile, except for one tile.
- The sides of the board are placed parallel to the chessboard.

Suppose that to carry out the instructions above, it takes H number of 1×3 boards and V number of 3×1 boards. Determine all possible pairs of (H, V).

AoPSOnline AoPSAcademy AoPS Academy