Art of Problem Solving

AoPS Community

National Science Olympiad 2021

www.artofproblemsolving.com/community/c2608438
by parmenides51, GorgonMathDota

- Day 1

1 On the whiteboard, the numbers are written sequentially: 123456789 . Andi has to paste a + (plus) sign or - (minus) sign in between every two successive numbers, and compute the value. Determine the least odd positive integer that Andi can't get from this process.

2 Let $A B C$ be an acute triangle. Let D and E be the midpoint of segment $A B$ and $A C$ respectively. Suppose L_{1} and L_{2} are circumcircle of triangle $A B C$ and $A D E$ respectively. $C D$ intersects L_{1} and L_{2} at $M(M \neq C)$ and $N(N \neq D)$. If $D M=D N$, prove that $\triangle A B C$ is isosceles.

3 A natural number is called a prime power if that number can be expressed as p^{n} for some prime p and natural number n.
Determine the largest possible n such that there exists a sequence of prime powers $a_{1}, a_{2}, \ldots, a_{n}$ such that $a_{i}=a_{i-1}+a_{i-2}$ for all $3 \leq i \leq n$.
$4 \quad$ Let x, y and z be positive reals such that $x+y+z=3$. Prove that

$$
2 \sqrt{x+\sqrt{y}}+2 \sqrt{y+\sqrt{z}}+2 \sqrt{z+\sqrt{x}} \leq \sqrt{8+x-y}+\sqrt{8+y-z}+\sqrt{8+z-x}
$$

- Day 2

5 Let $P(x)=x^{2}+r x+s$ be a polynomial with real coefficients. Suppose $P(x)$ has two distinct real roots, both of which are less than -1 and the difference between the two is less than 2. Prove that $P(P(x))>0$ for all real x.

6 There are n natural numbers written on the board. Every move, we could erase a, b and change it to $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)-\operatorname{gcd}(a, b)$. Prove that in finite number of moves, all numbers in the board could be made to be equal.

7 Given $\triangle A B C$ with circumcircle ℓ. Point M in $\triangle A B C$ such that $A M$ is the angle bisector of $\angle B A C$. Circle with center M and radius $M B$ intersects ℓ and $B C$ at D and E respectively, ($B \neq$ $D, B \neq E)$. Let P be the midpoint of arc $B C$ in ℓ that didn't have A. Prove that $A P$ angle bisector of $\angle D P E$ if and only if $\angle B=90^{\circ}$.

8 On a 100×100 chessboard, the plan is to place several 1×3 boards and 3×1 board, so that

- Each tile of the initial chessboard is covered by at most one small board.
- The boards cover the entire chessboard tile, except for one tile.
- The sides of the board are placed parallel to the chessboard.

Suppose that to carry out the instructions above, it takes H number of 1×3 boards and V number of 3×1 boards. Determine all possible pairs of (H, V).

