

AoPS Community

2021 Mexico National Olympiad

Mexico National Olympiad 2021

www.artofproblemsolving.com/community/c2609131 by parmenides51, jampm, Jjesus

-	Day 1
1	The real positive numbers a_1, a_2, a_3 are three consecutive terms of an arithmetic progression, and similarly, b_1, b_2, b_3 are distinct real positive numbers and consecutive terms of an arithmetic progression. Is it possible to use three segments of lengths a_1, a_2, a_3 as bases, and other three segments of lengths b_1, b_2, b_3 as altitudes, to construct three rectangles of equal area ?
2	Let ABC be a triangle with $\angle ACB > 90^{\circ}$, and let D be a point on BC such that AD is perpendicular to BC . Consider the circumference Γ with with diameter BC . A line ℓ passes through D and is tangent to Γ at P , cuts AC at M (such that M is in between A and C), and cuts the side AB at N . Prove that M is the midpoint of DP if and only if N is the midpoint of AB .
-	Day 2
4	Let ABC be an acutangle scalene triangle with $\angle BAC = 60^{\circ}$ and orthocenter H . Let ω_b be the circumference passing through H and tangent to AB at B , and ω_c the circumference passing through H and tangent to AC at C .
	- Prove that ω_b and ω_c only have H as common point. - Prove that the line passing through H and the circumcenter O of triangle ABC is a common tangent to ω_b and ω_c .
	<i>Note</i> : The orthocenter of a triangle is the intersection point of the three altitudes, whereas the circumcenter of a triangle is the center of the circumference passing through it's three vertices.
5	If $n = \overline{a_1 a_2 \cdots a_{k-1} a_k}$, be $s(n)$ such that . If k is even, $s(n) = \overline{a_1 a_2} + \overline{a_3 a_4} \cdots + \overline{a_{k-1} a_k}$. If k is odd, $s(n) = a_1 + \overline{a_2 a_3} \cdots + \overline{a_{k-1} a_k}$ For example $s(123) = 1 + 23 = 24$ and $s(2021) = 20 + 21 = 41$ Be n is $digital$ if $s(n)$ is a divisor of n . Prove that among any 198 consecutive positive integers, all of them less than 2000021 there is one of them that is $digital$.

6 Determine all non empty sets C_1, C_2, C_3, \cdots such that each one of them has a finite number of elements, all their elements are positive integers, and they satisfy the following property: For any positive integers n and m, the number of elements in the set C_n plus the number of elements in the set C_m equals the sum of the elements in the set C_{m+n} .

Note: We denote $|C_n|$ the number of elements in the set C_n , and S_k as the sum of the elements

AoPS Community

2021 Mexico National Olympiad

in the set C_n so the problem's condition is that for every n and m:

$$C_n|+|C_m|=S_{n+m}$$

is satisfied.

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.