Art of Problem Solving

AoPS Community

2021 Mexico National Olympiad

Mexico National Olympiad 2021

www.artofproblemsolving.com/community/c2609131
by parmenides51, jampm, Jjesus

- Day 1

1 The real positive numbers a_{1}, a_{2}, a_{3} are three consecutive terms of an arithmetic progression, and similarly, b_{1}, b_{2}, b_{3} are distinct real positive numbers and consecutive terms of an arithmetic progression. Is it possible to use three segments of lengths a_{1}, a_{2}, a_{3} as bases, and other three segments of lengths b_{1}, b_{2}, b_{3} as altitudes, to construct three rectangles of equal area?

2 Let $A B C$ be a triangle with $\angle A C B>90^{\circ}$, and let D be a point on $B C$ such that $A D$ is perpendicular to $B C$. Consider the circumference Γ with with diameter $B C$. A line ℓ passes through D and is tangent to Γ at P, cuts $A C$ at M (such that M is in between A and C), and cuts the side $A B$ at N. Prove that M is the midpoint of $D P$ if and only if N is the midpoint of $A B$.

- Day 2

4 Let $A B C$ be an acutangle scalene triangle with $\angle B A C=60^{\circ}$ and orthocenter H. Let ω_{b} be the circumference passing through H and tangent to $A B$ at B, and ω_{c} the circumference passing through H and tangent to $A C$ at C.

- Prove that ω_{b} and ω_{c} only have H as common point.
- Prove that the line passing through H and the circumcenter O of triangle $A B C$ is a common tangent to ω_{b} and ω_{c}.

Note: The orthocenter of a triangle is the intersection point of the three altitudes, whereas the circumcenter of a triangle is the center of the circumference passing through it's three vertices.

5 If $n=\overline{a_{1} a_{2} \cdots a_{k-1} a_{k}}$, be $s(n)$ such that
. If k is even, $s(n)=\overline{a_{1} a_{2}}+\overline{a_{3} a_{4}} \cdots+\overline{a_{k-1} a_{k}}$
. If k is odd, $s(n)=a_{1}+\overline{a_{2} a_{3}} \cdots+\overline{a_{k-1} a_{k}}$
For example $s(123)=1+23=24$ and $s(2021)=20+21=41$
Be n is digital if $s(n)$ is a divisor of n. Prove that among any 198 consecutive positive integers, all of them less than 2000021 there is one of them that is digital.

6 Determine all non empty sets $C_{1}, C_{2}, C_{3}, \cdots$ such that each one of them has a finite number of elements, all their elements are positive integers, and they satisfy the following property: For any positive integers n and m, the number of elements in the set C_{n} plus the number of elements in the set C_{m} equals the sum of the elements in the set C_{m+n}.

Note: We denote $\left|C_{n}\right|$ the number of elements in the set C_{n}, and S_{k} as the sum of the elements
in the set C_{n} so the problem's condition is that for every n and m :

$$
\left|C_{n}\right|+\left|C_{m}\right|=S_{n+m}
$$

is satisfied.

