AoPS Community

KJMO 2021

www.artofproblemsolving.com/community/c2617436
by parmenides51, Olympiadium

- \quad day 1

1 For positive integers n, k, r, denote by $A(n, k, r)$ the number of integer tuples ($x_{1}, x_{2}, \ldots, x_{k}$) satisfying the following conditions.
$-x_{1} \geq x_{2} \geq \cdots \geq x_{k} \geq 0$
$-x_{1}+x_{2}+\cdots+x_{k}=n$
$-x_{1}-x_{k} \leq r$
For all positive integers $s, t \geq 2$, prove that

$$
A(s t, s, t)=A(s(t-1), s, t)=A((s-1) t, s, t) .
$$

2 Let $\left\{a_{n}\right\}$ be a sequence of integers satisfying the following conditions.

- $a_{1}=2021^{2021}$
- $0 \leq a_{k}<k$ for all integers $k \geq 2$
- $a_{1}-a_{2}+a_{3}-a_{4}+\cdots+(-1)^{k+1} a_{k}$ is multiple of k for all positive integers k.

Determine the 2021^{2022} th term of the sequence $\left\{a_{n}\right\}$.
3 Let $A B C D$ be a cyclic quadrilateral with circumcircle Ω and let diagonals $A C$ and $B D$ intersect at X. Suppose that $A E F B$ is inscribed in a circumcircle of triangle $A B X$ such that $E F$ and $A B$ are parallel. $F X$ meets the circumcircle of triangle $C D X$ again at G. Let $E X$ meets $A B$ at P, and $X G$ meets $C D$ at Q. Denote by S the intersection of the perpendicular bisector of $\overline{E G}$ and Ω such that S is closer to A than B. Prove that line through S parallel to $P Q$ is tangent to Ω.

- \quad day 2

4 In an acute triangle $A B C$ with $\overline{A B}<\overline{A C}$, angle bisector of A and perpendicular bisector of $\overline{B C}$ intersect at D. Let P be an interior point of triangle $A B C$. Line $C P$ meets the circumcircle of triangle $A B P$ again at K. Prove that B, D, K are collinear if and only if $A D$ and $B C$ meet on the circumcircle of triangle $A P C$.
$5 \quad$ Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x+y)-f(x-y))=y^{2} f(x)
$$

for all $x, y \in \mathbb{R}$.

6 In a meeting of 4042 people, there are 2021 couples, each consisting of two people. Suppose that A and B, in the meeting, are friends when they know each other. For a positive integer n, each people chooses an integer from $-n$ to n so that the following conditions hold. (Two or more people may choose the same number).

- Two or less people chose 0 , and if exactly two people chose 0 , they are coupled.
- Two people are either coupled or don't know each other if they chose the same number.
- Two people are either coupled or know each other if they chose two numbers that sum to 0 .

Determine the least possible value of n for which such number selecting is always possible.

