AoPS Community

HMMT Invitational Competition 2016

www.artofproblemsolving.com/community/c261763
by v_Enhance

1 Theseus starts at the point $(0,0)$ in the plane. If Theseus is standing at the point (x, y) in the plane, he can step one unit to the north to point $(x, y+1)$, one unit to the west to point $(x-1, y)$, one unit to the south to point $(x, y-1)$, or one unit to the east to point $(x+1, y)$. After a sequence of more than two such moves, starting with a step one unit to the south (to point $(0,-1)$), Theseus finds himself back at the point $(0,0)$. He never visited any point other than $(0,0)$ more than once, and never visited the point $(0,0)$ except at the start and end of this sequence of moves.

Let X be the number of times that Theseus took a step one unit to the north, and then a step one unit to the west immediately afterward. Let Y be the number of times that Theseus took a step one unit to the west, and then a step one unit to the north immediately afterward. Prove that $|X-Y|=1$.

Mitchell Lee
2 Let $A B C$ be an acute triangle with circumcenter O, orthocenter H, and circumcircle Ω. Let M be the midpoint of $A H$ and N the midpoint of $B H$. Assume the points M, N, O, H are distinct and lie on a circle ω. Prove that the circles ω and Ω are internally tangent to each other.

Dhroova Aiylam and Evan Chen
3 Denote by \mathbb{N} the positive integers. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function such that, for any $w, x, y, z \in \mathbb{N}$,

$$
f(f(f(z))) f(w x f(y f(z)))=z^{2} f(x f(y)) f(w) .
$$

Show that $f(n!) \geq n$! for every positive integer n.
Pakawut Jiradilok
4 Let P be an odd-degree integer-coefficient polynomial. Suppose that $x P(x)=y P(y)$ for infinitely many pairs x, y of integers with $x \neq y$. Prove that the equation $P(x)=0$ has an integer root.

Victor Wang
$5 \quad$ Let $S=\left\{a_{1}, \ldots, a_{n}\right\}$ be a finite set of positive integers of size $n \geq 1$, and let T be the set of all positive integers that can be expressed as sums of perfect powers (including 1) of distinct numbers in S, meaning

$$
T=\left\{\sum_{i=1}^{n} a_{i}^{e_{i}} \mid e_{1}, e_{2}, \ldots, e_{n} \geq 0\right\}
$$

Show that there is a positive integer N (only depending on n) such that T contains no arithmetic progression of length N.
Yang Liu

