AoPS Community

Korea National Olympiad 2021

www.artofproblemsolving.com/community/c2618015
by KPBY0507, Olympiadium

- \quad Part 1

P1 Let $A B C$ be an acute triangle and D be an intersection of the angle bisector of A and side $B C$. Let Ω be a circle tangent to the circumcircle of triangle $A B C$ and side $B C$ at A and D, respectively. Ω meets the sides $A B, A C$ again at E, F, respectively. The perpendicular line to $A D$, passing through E, F meets Ω again at G, H, respectively. Suppose that $A E$ and $G D$ meet at $P, E H$ and $G F$ meet at Q, and $H D$ and $A F$ meet at R. Prove that $\frac{\overline{Q F}}{\overline{Q G}}=\frac{\overline{H R}}{\overline{P G}}$.

P2 For positive integers n, k, r, denote by $A(n, k, r)$ the number of integer tuples ($x_{1}, x_{2}, \ldots, x_{k}$) satisfying the following conditions.
$-x_{1} \geq x_{2} \geq \cdots \geq x_{k} \geq 0$
$-x_{1}+x_{2}+\cdots+x_{k}=n$

- $x_{1}-x_{k} \leq r$

For all positive integers m, s, t, prove that

$$
A(m, s, t)=A(m, t, s) .
$$

P3 Show that for any positive integers k and $1 \leq a \leq 9$, there exists n such that satisfies the below statement.

When $2^{n}=a_{0}+10 a_{1}+10^{2} a_{2}+\cdots+10^{i} a_{i}+\cdots\left(0 \leq a_{i} \leq 9\right.$ and a_{i} is integer $), a_{k}$ is equal to a.

- Part 2

P4 For a positive integer n, there are two countries A and B with n airports each and $n^{2}-2 n+2$ airlines operating between the two countries. Each airline operates at least one flight. Exactly one flight by one of the airlines operates between each airport in A and each airport in B, and that flight operates in both directions. Also, there are no flights between two airports in the same country. For two different airports P and Q, denote by " $[\mathrm{i}](P, Q)$-travel route $[/ \mathrm{i}]$ " the list of airports $T_{0}, T_{1}, \ldots, T_{s}$ satisfying the following conditions.

- $T_{0}=P, T_{s}=Q$
- $T_{0}, T_{1}, \ldots, T_{s}$ are all distinct.
- There exists an airline that operates between the airports T_{i} and T_{i+1} for all $i=0,1, \ldots, s-1$.

Prove that there exist two airports P, Q such that there is no or exactly one $[\mathrm{i}](P, Q)$-travel route[/i].

Consider a complete bipartite graph $G(A, B)$ with $|A|=|B|=n$. Suppose there are $n^{2}-2 n+2$ colors and each edge is colored by one of these colors. Define (P, Q) - path a path from P to Q such that all of the edges in the path are colored the same. Prove that there exist two vertices P and Q such that there is no or only one (P, Q) - path.

P5 A real number sequence a_{1}, \cdots, a_{2021} satisfies the below conditions.

$$
a_{1}=1, a_{2}=2, a_{n+2}=\frac{2 a_{n+1}^{2}}{a_{n}+a_{n+1}}(1 \leq n \leq 2019)
$$

Let the minimum of a_{1}, \cdots, a_{2021} be m, and the maximum of a_{1}, \cdots, a_{2021} be M.
Let a 2021 degree polynomial

$$
P(x):=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{2021}\right)
$$

$|P(x)|$ is maximum in $[m, M]$ when $x=\alpha$. Show that $1<\alpha<2$.
P6 Let $A B C$ be an obtuse triangle with $\angle A>\angle B>\angle C$, and let M be a midpoint of the side $B C$. Let D be a point on the arc $A B$ of the circumcircle of triangle $A B C$ not containing C. Suppose that the circle tangent to $B D$ at D and passing through A meets the circumcircle of triangle $A B M$ again at E and $\overline{B D}=\overline{B E}$. ω, the circumcircle of triangle $A D E$, meets $E M$ again at F.

Prove that lines $B D$ and $A E$ meet on the line tangent to ω at F.

