AoPS Community

Benelux 2016

www.artofproblemsolving.com/community/c264513
by socrates

1 Find the greatest positive integer N with the following property: there exist integers x_{1}, \ldots, x_{N} such that $x_{i}^{2}-x_{i} x_{j}$ is not divisible by 1111 for any $i \neq j$.

2 Let n be a positive integer. Suppose that its positive divisors can be partitioned into pairs (i.e. can be split in groups of two) in such a way that the sum of each pair is a prime number. Prove that these prime numbers are distinct and that none of these are a divisor of n.
$3 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{Z}$ such that

$$
(f(f(y)-x))^{2}+f(x)^{2}+f(y)^{2}=f(y) \cdot(1+2 f(f(y))),
$$

for all $x, y \in \mathbb{R}$.
4 A circle ω passes through the two vertices B and C of a triangle $A B C$. Furthermore, ω intersects segment $A C$ in $D \neq C$ and segment $A B$ in $E \neq B$. On the ray from B through D lies a point K such that $|B K|=|A C|$, and on the ray from C through E lies a point L such that $|C L|=|A B|$. Show that the circumcentre O of triangle $A K L$ lies on ω.

