AoPS Community

Benelux 2015

www.artofproblemsolving.com/community/c264531
by Lepuslapis

1 Determine the smallest positive integer q with the following property: for every integer m with $1 \leqslant m \leqslant 1006$, there exists an integer n such that

$$
\frac{m}{1007} q<n<\frac{m+1}{1008} q
$$

2 Let $A B C$ be an acute triangle with circumcentre O. Let Γ_{B} be the circle through A and B that is tangent to $A C$, and let Γ_{C} be the circle through A and C that is tangent to $A B$. An arbitrary line through A intersects Γ_{B} again in X and Γ_{C} again in Y. Prove that $|O X|=|O Y|$.

3 Does there exist a prime number whose decimal representation is of the form $3811 \cdots 11$ (that is, consisting of the digits 3 and 8 in that order, followed by one or more digits 1)?

4 Let n be a positive integer. For each partition of the set $\{1,2, \ldots, 3 n\}$ into arithmetic progressions, we consider the sum S of the respective common differences of these arithmetic progressions. What is the maximal value that S can attain?
(An arithmetic progression is a set of the form $\{a, a+d, \ldots, a+k d\}$, where a, d, k are positive integers, and $k \geqslant 2$; thus an arithmetic progression has at least three elements, and successive elements have difference d, called the common difference of the arithmetic progression.)

