AoPS Community

Second Round Olympiad 2015

www.artofproblemsolving.com/community/c266098
by buzzychaoz, sqing

- (A)

1 Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers.Prove that you can select $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n} \in\{-1,1\}$ such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}+\left(\sum_{i=1}^{n} \varepsilon_{i} a_{i}\right)^{2} \leq(n+1)\left(\sum_{i=1}^{n} a_{i}^{2}\right) .
$$

2 Let $S=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, where $A_{1}, A_{2}, \ldots, A_{n}$ are n pairwise distinct finite sets $(n \geq 2)$, such that for any $A_{i}, A_{j} \in S, A_{i} \cup A_{j} \in S$. If $k=\min _{1 \leq i \leq n}\left|A_{i}\right| \geq 2$, prove that there exist $x \in \bigcup_{i=1}^{n} A_{i}$, such that x is in at least $\frac{n}{k}$ of the sets $A_{1}, A_{2}, \ldots, A_{n}$ (Here $|X|$ denotes the number of elements in finite set X).
$3 \quad P$ is a point on arc $\overparen{B C}$ of the circumcircle of $\triangle A B C$ not containing A, K lies on segment $A P$ such that $B K$ bisects $\angle A B C$. The circumcircle of $\triangle K P C$ meets $A C, B D$ at D, E respectively. $P E$ meets $A B$ at F. Prove that $\angle A B C=2 \angle F C B$.

4 Find all positive integers k such that for any positive integer $n, 2^{(k-1) n+1}$ does not divide $\frac{(k n)!}{n!}$.

- (B)

1 Let a, b, c be nonnegative real numbers. Prove that

$$
\frac{(a-b c)^{2}+(b-c a)^{2}+(c-a b)^{2}}{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}} \geq \frac{1}{2}
$$

2 In isoceles $\triangle A B C, A B=A C, I$ is its incenter, D is a point inside $\triangle A B C$ such that I, B, C, D are concyclic. The line through C parallel to $B D$ meets $A D$ at E. Prove that $C D^{2}=B D \cdot C E$.

3 Prove that there exist infinitely many positive integer triples $(a, b, c)(a, b, c>2015)$ such that

$$
a|b c-1, b| a c+1, c \mid a b+1 .
$$

4 Given positive integers $m, n(2 \leq m \leq n)$, let $a_{1}, a_{2}, \ldots, a_{m}$ be a permutation of any m pairwise distinct numbers taken from $1,2, \ldots, n$. If there exist $k \in\{1,2, \ldots, m\}$ such that $a_{k}+k$ is odd, or there exist positive integers $k, l(1 \leq k<l \leq m)$ such that $a_{k}>a_{l}$, then call $a_{1}, a_{2}, \ldots, a_{m}$ a good sequence. Find the number of good sequences.

