

AoPS Community

2015 China Second Round Olympiad

Second Round Olympiad 2015

www.artofproblemsolving.com/community/c266098 by buzzychaoz, sqing

– (A)

1 Let a_1, a_2, \ldots, a_n be real numbers. Prove that you can select $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \in \{-1, 1\}$ such that

$$\left(\sum_{i=1}^n a_i\right)^2 + \left(\sum_{i=1}^n \varepsilon_i a_i\right)^2 \le (n+1) \left(\sum_{i=1}^n a_i^2\right).$$

- **2** Let $S = \{A_1, A_2, ..., A_n\}$, where $A_1, A_2, ..., A_n$ are *n* pairwise distinct finite sets $(n \ge 2)$, such that for any $A_i, A_j \in S$, $A_i \cup A_j \in S$. If $k = \min_{1 \le i \le n} |A_i| \ge 2$, prove that there exist $x \in \bigcup_{i=1}^n A_i$, such that *x* is in at least $\frac{n}{k}$ of the sets $A_1, A_2, ..., A_n$ (Here |X| denotes the number of elements in finite set *X*).
- **3** *P* is a point on arc BC of the circumcircle of $\triangle ABC$ not containing *A*, *K* lies on segment *AP* such that *BK* bisects $\angle ABC$. The circumcircle of $\triangle KPC$ meets *AC*, *BD* at *D*, *E* respectively. *PE* meets *AB* at *F*. Prove that $\angle ABC = 2\angle FCB$.
- **4** Find all positive integers k such that for any positive integer n, $2^{(k-1)n+1}$ does not divide $\frac{(kn)!}{n!}$.

1 Let *a*, *b*, *c* be nonnegative real numbers. Prove that

$$\frac{(a-bc)^2+(b-ca)^2+(c-ab)^2}{(a-b)^2+(b-c)^2+(c-a)^2} \geq \frac{1}{2}$$

2 In isoceles $\triangle ABC$, AB = AC, I is its incenter, D is a point inside $\triangle ABC$ such that I, B, C, Dare concyclic. The line through C parallel to BD meets AD at E. Prove that $CD^2 = BD \cdot CE$.

3 Prove that there exist infinitely many positive integer triples (a, b, c)(a, b, c > 2015) such that

$$a|bc-1, b|ac+1, c|ab+1.$$

AoPS Community

2015 China Second Round Olympiad

4 Given positive integers $m, n(2 \le m \le n)$, let a_1, a_2, \ldots, a_m be a permutation of any m pairwise distinct numbers taken from $1, 2, \ldots, n$. If there exist $k \in \{1, 2, \ldots, m\}$ such that $a_k + k$ is odd, or there exist positive integers $k, l(1 \le k < l \le m)$ such that $a_k > a_l$, then call a_1, a_2, \ldots, a_m a *good* sequence. Find the number of good sequences.

Act of Problem Solving is an ACS WASC Accredited School.