

AoPS Community

2020 Korea Junior Math Olympiad

KJMO 2020

www.artofproblemsolving.com/community/c2661413 by parmenides51, matheeeee, roughlife, jmsung1004

-	day 1
1	The integer n is a number expressed as the sum of an even number of different positive integers less than or equal to 2000. 1+2+···+2000 Find all of the following positive integers that cannot be the value of n.
2	Let ABC be an acute triangle with circumcircle Ω and $\overline{AB} < \overline{AC}$. The angle bisector of A meets Ω again at D , and the line through D , perpendicular to BC meets Ω again at E . The circle centered at A , passing through E meets the line DE again at F . Let K be the circumcircle of triangle ADF . Prove that AK is perpendicular to BC .
3	The permutation σ consisting of four words A, B, C, D has $f_{AB}(\sigma)$, the sum of the number of B placed rightside of every A . We can define $f_{BC}(\sigma), f_{CD}(\sigma), f_{DA}(\sigma)$ as the same way too. For example, $\sigma = ACBDBACDCBAD$, $f_{AB}(\sigma) = 3 + 1 + 0 = 4$, $f_{BC}(\sigma) = 4, f_{CD}(\sigma) = 6$, $f_{DA}(\sigma) = 3$ Find the maximal value of $f_{AB}(\sigma) + f_{BC}(\sigma) + f_{CD}(\sigma) + f_{DA}(\sigma)$, when σ consists of 2020 letters for each A, B, C, D
-	day 2
4	In an acute triangle ABC with $\overline{AB} > \overline{AC}$, let D, E, F be the feet of the altitudes from A, B, C , respectively. Let P be an intersection of lines EF and BC , and let Q be a point on the segment BD such that $\angle QFD = \angle EPC$. Let O, H denote the circumcenter and the orthocenter of triangle ABC , respectively. Suppose that OH is perpendicular to AQ . Prove that P, O, H are collinear.
5	Let a, b, c, d, e be real numbers satisfying the following conditions.
	$a \le b \le c \le d \le e$, $a + e = 1$, $b + c + d = 3$, $a^2 + b^2 + c^2 + d^2 + e^2 = 14$
	Determine the maximum possible value of ae .
6	for a positive integer n , there are positive integers a_1, a_2,a_n that satisfy these two. (1) $a_1 = 1, a_n = 2020$ (2) for all integer i , i satisfies $2 \le i \le n, a_i - a_{i-1} = -2$ or 3. find the greatest n

AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.