AoPS Community

KJMO 2020

www.artofproblemsolving.com/community/c2661413
by parmenides51, matheeeee, roughlife, jmsung1004

- day 1

1 The integer n is a number expressed as the sum of an even number of different positive integers less than or equal to 2000. 1+2+ $\cdots+2000$
Find all of the following positive integers that cannot be the value of n.
2 Let $A B C$ be an acute triangle with circumcircle Ω and $\overline{A B}<\overline{A C}$. The angle bisector of A meets Ω again at D, and the line through D, perpendicular to $B C$ meets Ω again at E. The circle centered at A, passing through E meets the line $D E$ again at F. Let K be the circumcircle of triangle $A D F$. Prove that $A K$ is perpendicular to $B C$.

3 The permutation σ consisting of four words A, B, C, D has $f_{A B}(\sigma)$, the sum of the number of B placed rightside of every A. We can define $f_{B C}(\sigma), f_{C D}(\sigma), f_{D A}(\sigma)$ as the same way too.
For example, $\sigma=A C B D B A C D C B A D, f_{A B}(\sigma)=3+1+0=4, f_{B C}(\sigma)=4, f_{C D}(\sigma)=6$, $f_{D A}(\sigma)=3$
Find the maximal value of $f_{A B}(\sigma)+f_{B C}(\sigma)+f_{C D}(\sigma)+f_{D A}(\sigma)$, when σ consists of 2020 letters for each A, B, C, D

- \quad day 2

4 In an acute triangle $A B C$ with $\overline{A B}>\overline{A C}$, let D, E, F be the feet of the altitudes from A, B, C, respectively. Let P be an intersection of lines $E F$ and $B C$, and let Q be a point on the segment $B D$ such that $\angle Q F D=\angle E P C$. Let O, H denote the circumcenter and the orthocenter of triangle $A B C$, respectively. Suppose that $O H$ is perpendicular to $A Q$. Prove that P, O, H are collinear.

5 Let a, b, c, d, e be real numbers satisfying the following conditions.

$$
a \leq b \leq c \leq d \leq e, \quad a+e=1, \quad b+c+d=3, \quad a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=14
$$

Determine the maximum possible value of $a e$.
6 for a positive integer n, there are positive integers $a_{1}, a_{2}, \ldots a_{n}$ that satisfy these two.
(1) $a_{1}=1, a_{n}=2020$
(2) for all integer i, satisfies $2 \leq i \leq n, a_{i}-a_{i-1}=-2$ or 3 .
find the greatest n

