AoPS Community

2nd competition, an Argentinian geometry contest

www.artofproblemsolving.com/community/c2662364
by parmenides51

- \quad round 1
- level 1
p1. Construct the given figure, where $A B C D$ is a square and $A E F$ is an equilateral triangle. https://cdn.artofproblemsolving.com/attachments/f/c/1b4043aeed5992ddb8739eec5a8e72ebf4cf gif
p2. Let $A B C$ be an isosceles triangle $(A B=A C)$. We draw the perpendicular bisector m of $A C$ and the bisector n of angle $\angle C$. If m, n and $A B$ intersect at a single point, how much is angle $\angle A$?
p3. Let A, B, and C be points on a circle. Let us call the orthocenter of the triangle H. Find the locus of H as A moves around the circle.

level 2

p4. Given 3 points A, B and C, construct the isosceles trapezoid $A B C D$ where $A B=C D$ and $B C$ is parallel to $A D$ ($B C$ different from $A D$).
p5. Let A, B and C be points on a circle. Let's call the centroid of the triangle G. Find the locus of G as A moves along the circle.
p6. Given a triangle $A B C$, let D, E, and F be the midpoints of the sides $B C, C A$, and $A B$, respectively. From D the lines M_{1} and M_{2} are drawn, perpendicular on $A B$ and $A C$ respectively. From E the lines M_{3} and M_{4} are drawn, perpendicular on $B C$ and $A B$ respectively. From F the lines M_{5} and M_{6} are drawn perpendicular on $A C$ and $B C$ respectively. Let A^{\prime} be the intersection between M_{4} and M_{5}. Let B^{\prime} be the intersection between M_{6} and M_{1}. Let C^{\prime} be the intersection between M_{2} and M_{3}. Show that the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar and find the ratio of similarity.

- final round
- level 1
p1. Three points are given O, G and M. Construct a triangle in such a way that O is its circumcenter, G is its centroid, and M is the midpoint of one side.
p2. Let $A B C$ be a triangle and H its orthocenter. The height is drawn from A, which intersects $B C$ at D. On the extension of the altitude $A D$ the point E is taken in such a way that the angles $\angle C A D$ and $\angle C B E$ are equal. Prove that $B E=B H$.
p3. Let ω be a circle, and M be a variable point on its exterior. From M the tangents to ω. Let A and B be the touchpoints. Find the locus of the incenter of the triangle $M A B$ as M varies.
p4. i) Find a point D in the interior of a triangle $A B C$ such that the areas of the triangles $A B D$, $B C D$ and $C A D$ are equal.
ii) The same as i) but with D outside $A B C$.
- \quad level 2
p5. Let $A B C$ be a triangle and M be a variable point on $A B . N$ is the point on the prolongation of $A C$ such that $C N=B M$ and that it does not belong to the ray $C A$. The parallelogram $B M N P$ is constructed (in that order). Find the locus of P as M varies.
p6. Let $A B C D$ be a quadrilateral. Let $C_{1}, C_{2}, C_{3}, C_{4}$ be the circles of diameters $A B, B C, C D$ and $D A$ respectively. Let P, Q, R and S be the points of intersection (which are not vertices of $A B C D)$ of C_{1} and C_{2}, C_{2} and C_{3}, C_{3} and C_{4}, C_{4} and C_{1} respectively. Show that the quadrilaterals $A B C D$ and $P Q R S$ are similar.
p7. M, N, and P are three collinear points, with N between M and P. Let r be the perpendicualr bisector of $N P$. A point O is taken over r. ω is the circle with center O passing through N. The tangents through M to ω intersect ω at T and T^{\prime}. Find the locus of the centroid of the triangle $M T T^{\prime}$ a O varies over r.
p8. P, Q and R are the centers of three circles that pass through the same point O. Let A, B and C be the points (other than O) of intersection of the circles. Prove that A, B and C are collinear if and only if O, Q, P and R are in the same circle.
p8 might have a typo, as here (https://www.oma.org.ar/enunciados/2da2da.htm) in my source it was incorrect, and I tried correcting it.

