AoPS Community

Second Round Olympiad 2014

www.artofproblemsolving.com/community/c266517
by sqing, abccsss

1 Let a, b, c be real numbers such that $a+b+c=1$ and $a b c>0$. Prove that

$$
b c+c a+a b<\frac{\sqrt{a b c}}{2}+\frac{1}{4}
$$

2 Let $A B C$ be an acute triangle such that $\angle B A C \neq 60^{\circ}$. Let D, E be points such that $B D, C E$ are tangent to the circumcircle of $A B C$ and $B D=C E=B C$ (A is on one side of line $B C$ and D, E are on the other side). Let F, G be intersections of line $D E$ and lines $A B, A C$. Let M be intersection of $C F$ and $B D$, and N be intersection of $C E$ and $B G$. Prove that $A M=A N$.

3 Let $S=\{1,2,3, \cdots, 100\}$. Find the maximum value of integer k, such that there exist k different nonempty subsets of S satisfying the condition: for any two of the k subsets, if their intersection is nonemply, then the minimal element of their intersection is not equal to the maximal element of either of the two subsets.

4 Let $x_{1}, x_{2}, \ldots, x_{2014}$ be integers among which no two are congurent modulo 2014. Let $y_{1}, y_{2}, \ldots, y_{2014}$ be integers among which no two are congurent modulo 2014. Prove that one can rearrange $y_{1}, y_{2}, \ldots, y_{2014}$ to $z_{1}, z_{2}, \ldots, z_{2014}$, so that among

$$
x_{1}+z_{1}, x_{2}+z_{2}, \ldots, x_{2014}+z_{2014}
$$

no two are congurent modulo 4028.

