## AoPS Community

## Junior Balkan Team Selection Test 2016

www.artofproblemsolving.com/community/c272881
by mihajlon, Garfield

1 Let rightangled $\triangle A B C$ be given with right angle at vertex $C$. Let $D$ be foot of altitude from $C$ and let $k$ be circle that touches $B D$ at $E, C D$ at $F$ and circumcircle of $\triangle A B C$ at $G$. a.) Prove that points $A, F$ and $G$ are collinear. b.) Express radius of circle $k$ in terms of sides of $\triangle A B C$.

2 Find minimal number of divisors that can number $\left|2016^{m}-36^{n}\right|$ have, where $m$ and $n$ are natural numbers.

3 In two neigbouring cells(dimensions $1 \times 1$ ) of square table $10 \times 10$ there is hidden treasure. John needs to guess these cells. In one move he can choose some cell of the table and can get information whether there is treasure in it or not. Determine minimal number of move's, with properly strategy, that always allows John to find cells in which is treasure hidden.

4 Let $a, b, c \in \mathbb{R}^{+}$, prove that:

$$
\frac{2 a}{\sqrt{3 a+b}}+\frac{2 b}{\sqrt{3 b+c}}+\frac{2 c}{\sqrt{3 c+a}} \leq \sqrt{3(a+b+c)}
$$

