Art of Problem Solving

AoPS Community

Greece Team Selection Test 2013

www.artofproblemsolving.com/community/c273566
by gavrilos, silouan

- \quad Test 1
$1 \quad$ Find all pairs of non-negative integers (m, n) satisfying $\frac{n(n+2)}{4}=m^{4}+m^{2}-m+1$
2 Let $A B C$ be a non-isosceles, aqute triangle with $A B<A C$ inscribed in circle $c(O, R)$. The circle $c_{1}(B, A B)$ crosses $A C$ at K and c at $E . K E$ crosses c at F and $B O$ crosses $K E$ at L and $A C$ at M while $A E$ crosses $B F$ at D.Prove that:
i) D, L, M, F are concyclic.
ii) B, D, K, M, E are concyclic.

3 Find the largest possible value of M for which $\frac{x}{1+\frac{y z}{x}}+\frac{y}{1+\frac{z x}{y}}+\frac{z}{1+\frac{x y}{z}} \geq M$ for all $x, y, z>0$ with $x y+y z+z x=1$

4 Given are n different concentric circles on the plane.Inside the disk with the smallest radius (strictly inside it), we consider two distinct points A, B.We consider k distinct lines passing through A and m distinct lines passing through B.There is no line passing through both A and B and all the lines passing through k intersect with all the lines passing through B. The intersections do not lie on some of the circles.Determine the maximum and the minimum number of regions formed by the lines and the circles and are inside the circles.

- \quad Test 2

1 Determine whether the polynomial $P(x)=\left(x^{2}-2 x+5\right)\left(x^{2}-4 x+20\right)+1$ is irreducible over $\mathbb{Z}[X]$.

2 For the several values of the parameter $m \in \mathbb{N}^{*}$, find the pairs of integers (a, b) that satisfy the relation

$$
\frac{[a, m]+[b, m]}{(a+b) m}=\frac{10}{11},
$$

and,moreover,on the Cartesian plane $O x y$ the lie in the square $D=\{(x, y): 1 \leq x \leq 36,1 \leq$ $y \leq 36\}$.
[i] Note: $[k, l]$ denotes the least common multiple of the positive integers $k, l .[/ i]$
3 Given is a triangle $A B C$. On the extensions of the side $A B$ we consider points A_{1}, B_{1} such that $A B_{1}=B A_{1}$ (with A_{1} lying closer to B). On the extensions of the side $B C$ we consider points B_{4}, C_{4} such that $C B_{4}=B C_{4}$ (with B_{4} lying closer to C). On the extensions of the side $A C$
we consider points C_{1}, A_{4} such that $A C_{1}=C A_{4}$ (with C_{1} lying closer to A). On the segment $A_{1} A_{4}$ we consider points A_{2}, A_{3} such that $A_{1} A_{2}=A_{3} A_{4}=m A_{1} A_{4}$ where $0<m<\frac{1}{2}$. Points B_{2}, B_{3} and C_{2}, C_{3} are defined similarly,on the segments $B_{1} B_{4}, C_{1} C_{4}$ respectively.If $D \equiv B B_{2} \cap$ $C C_{2}, E \equiv A A_{3} \cap C C_{2}, F \equiv A A_{3} \cap B B_{3}, G \equiv B B_{3} \cap C C_{3}, H \equiv A A_{2} \cap C C_{3}$ and $I \equiv$ $A A_{2} \cap B B_{2}$, prove that the diagonals $D G, E H, F I$ of the hexagon $D E F G H I$ are concurrent.

4 Let n be a positive integer. An equilateral triangle with side n will be denoted by T_{n} and is divided in n^{2} unit equilateral triangles with sides parallel to the initial, forming a grid. We will call "trapezoid" the trapezoid which is formed by three equilateral triangles (one base is equal to one and the other is equal to two).
Let also m be a positive integer with $m<n$ and suppose that T_{n} and T_{m} can be tiled with "trapezoids".
Prove that, if from T_{n} we remove a T_{m} with the same orientation, then the rest can be tiled with "trapezoids".

