

AoPS Community

Greece Team Selection Test 2013

www.artofproblemsolving.com/community/c273566 by gavrilos, silouan

-	Test 1
1	Find all pairs of non-negative integers (m,n) satisfying $\frac{n(n+2)}{4} = m^4 + m^2 - m + 1$
2	Let <i>ABC</i> be a non-isosceles,aqute triangle with $AB < AC$ inscribed in circle $c(O, R)$. The circle $c_1(B, AB)$ crosses <i>AC</i> at <i>K</i> and <i>c</i> at <i>E</i> . <i>KE</i> crosses <i>c</i> at <i>F</i> and <i>BO</i> crosses <i>KE</i> at <i>L</i> and <i>AC</i> at <i>M</i> while <i>AE</i> crosses <i>BF</i> at <i>D</i> . Prove that: i) <i>D</i> , <i>L</i> , <i>M</i> , <i>F</i> are concyclic. ii) <i>B</i> , <i>D</i> , <i>K</i> , <i>M</i> , <i>E</i> are concyclic.
3	Find the largest possible value of M for which $\frac{x}{1+\frac{yz}{x}} + \frac{y}{1+\frac{zx}{y}} + \frac{z}{1+\frac{xy}{z}} \ge M$ for all $x, y, z > 0$ with $xy + yz + zx = 1$
4	Given are <i>n</i> different concentric circles on the plane.Inside the disk with the smallest radius (strictly inside it),we consider two distinct points <i>A</i> , <i>B</i> .We consider <i>k</i> distinct lines passing through <i>A</i> and <i>m</i> distinct lines passing through <i>B</i> .There is no line passing through both <i>A</i> and <i>B</i> and all the lines passing through <i>k</i> intersect with all the lines passing through <i>B</i> .The intersections do not lie on some of the circles.Determine the maximum and the minimum number of regions formed by the lines and the circles and are inside the circles.
-	Test 2
1	Determine whether the polynomial $P(x) = (x^2 - 2x + 5)(x^2 - 4x + 20) + 1$ is irreducible over $\mathbb{Z}[X]$.
2	For the several values of the parameter $m \in \mathbb{N}^*$, find the pairs of integers (a, b) that satisfy the relation $\frac{[a,m]+[b,m]}{(a+b)m} = \frac{10}{11},$ and, moreover, on the Cartesian plane Oxy the lie in the square $D = \{(x,y) : 1 \le x \le 36, 1 \le y \le 36\}.$ [i]Note: $[k, l]$ denotes the least common multiple of the positive integers $k, l.[/i]$
3	Given is a triangle ABC .On the extensions of the side AB we consider points A_1, B_1 such that $AB_1 = BA_1$ (with A_1 lying closer to B).On the extensions of the side BC we consider points B_4, C_4 such that $CB_4 = BC_4$ (with B_4 lying closer to C).On the extensions of the side AC

AoPS Community

2013 Greece Team Selection Test

we consider points C_1 , A_4 such that $AC_1 = CA_4$ (with C_1 lying closer to A). On the segment A_1A_4 we consider points A_2 , A_3 such that $A_1A_2 = A_3A_4 = mA_1A_4$ where $0 < m < \frac{1}{2}$. Points B_2 , B_3 and C_2 , C_3 are defined similarly, on the segments B_1B_4 , C_1C_4 respectively. If $D \equiv BB_2 \cap CC_2$, $E \equiv AA_3 \cap CC_2$, $F \equiv AA_3 \cap BB_3$, $G \equiv BB_3 \cap CC_3$, $H \equiv AA_2 \cap CC_3$ and $I \equiv AA_2 \cap BB_2$, prove that the diagonals DG, EH, FI of the hexagon DEFGHI are concurrent.

4 Let *n* be a positive integer. An equilateral triangle with side *n* will be denoted by T_n and is divided in n^2 unit equilateral triangles with sides parallel to the initial, forming a grid. We will call "trapezoid" the trapezoid which is formed by three equilateral triangles (one base is equal to one and the other is equal to two).

Let also m be a positive integer with m < n and suppose that T_n and T_m can be tiled with "trapezoids".

Prove that, if from T_n we remove a T_m with the same orientation, then the rest can be tiled with "trapezoids".

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

© 2019 AoPS Incorporated 2

Art of Problem Solving is an ACS WASC Accredited School.