AoPS Community

Lusophon Mathematical Olympiad 2021

www.artofproblemsolving.com/community/c2738067
by parmenides51, ericxyzhu

- Day 1

1 Juca has decided to call all positive integers with 8 digits as sextalternados if it is a multiple of 30 and its consecutive digits have different parity. At the same time, Carlos decided to classify all sextalternados that are multiples of 12 as supersextalternados.
a) Show that supersextalternados numbers don't exist.
b) Find the smallest sextalternado number.

2 Esmeralda has created a special knight to play on quadrilateral boards that are identical to chessboards. If a knight is in a square then it can move to another square by moving 1 square in one direction and 3 squares in a perpendicular direction (which is a diagonal of a 2×4 rectangle instead of 2×3 like in chess). In this movement, it doesn't land on the squares between the beginning square and the final square it lands on.

A trip of the length n of the knight is a sequence of n squares $C 1, C 2, \ldots, C n$ which are all distinct such that the knight starts at the $C 1$ square and for each i from 1 to $n-1$ it can use the movement described before to go from the $C i$ square to the $C(i+1)$.

Determine the greatest $N \in \mathbb{N}$ such that there exists a path of the knight with length N on a 5×5 board.

3 Let triangle $A B C$ be an acute triangle with $A B \neq A C$. The bisector of $B C$ intersects the lines $A B$ and $A C$ at points F and E, respectively. The circumcircle of triangle $A E F$ has center P and intersects the circumcircle of triangle $A B C$ at point D with D different to A.

Prove that the line $P D$ is tangent to the circumcircle of triangle $A B C$.

- Day 2

4 Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in \mathbb{R}^{+}$such that

$$
x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}=x_{2}^{2}-x_{2} x_{3}+x_{3}^{2}=x_{3}^{2}-x_{3} x_{4}+x_{4}^{2}=x_{4}^{2}-x_{4} x_{5}+x_{5}^{2}=x_{5}^{2}-x_{5} x_{1}+x_{1}^{2}
$$

Prove that $x_{1}=x_{2}=x_{3}=x_{4}=x_{5}$.
$5 \quad$ There are 3 lines r, s and t on a plane. The lines r and s intersect perpendicularly at point A. the line t intersects the line r at point B and the line s at point C. There exist exactly 4 circumferences on the plane that are simultaneously tangent to all those 3 lines.

Prove that the radius of one of those circumferences is equal to the sum of the radius of the other three circumferences.

6 A positive integer n is called omopeiro if there exists n non-zero integers that are not necessarily distinct such that 2021 is the sum of the squares of those n integers. For example, the number 2 is not an omopeiro, because 2021 is not a sum of two non-zero squares, but 2021 is an omopeiro, because $2021=1^{2}+1^{2}+\cdots+1^{2}$, which is a sum of 2021 squares of the number 1 .

Prove that there exist more than 1500 omopeiro numbers.
Note: proving that there exist at least 500 omopeiro numbers is worth 2 points.

