

Saudi Arabia IMO Team Selection Test 2010

AoPS Community

www.artofproblemsolving.com/community/c2744479 by parmenides51	
-	Day I
1	Let $A_1A_2A_{2010}$ be a regular 2010-gon. Find the number of obtuse triangles whose vertices are among $A_1, A_2,, A_{2010}$.
2	Find all functions $f, g : N \to N$ such that for all $m, n \in N$ the following relation holds:
	f(m) - f(n) = (m - n)(g(m) + g(n))
	Note: $N = \{0, 1, 2,\}$
3	Consider a circle of center O and a chord AB of it (not a diameter). Take a point T on the ray OB . The perpendicular at T onto OB meets the chord AB at C and the circle at D and E . Denote by S the orthogonal projection of T onto the chord AB . Prove that $AS \cdot BC = TE \cdot TD$.
_	Day II
1	Let <i>ABC</i> be a triangle with $\angle B \ge 2\angle C$. Denote by <i>D</i> the foot of the altitude from <i>A</i> and by <i>M</i> be the midpoint of <i>BC</i> . Prove that $DM \ge \frac{AB}{2}$.
2	The squares $OABC$ and $OA_1B_1C_1$ are situated in the same plane and are directly oriented. Prove that the lines AA_1 , BB_1 , and CC_1 are concurrent.
3	Let $f: N \to N$ be a strictly increasing function such that $f(f(n)) = 3n$, for all $n \in N$. Find $f(2010)$.
	Note: $N = \{0, 1, 2,\}$
-	Day III
1	Find all real numbers x that can be written as
	$x = \frac{a_0}{a_1 a_2 \dots a_n} + \frac{a_1}{a_2 a_3 \dots a_n} + \frac{a_2}{a_3 a_4 \dots a_n} + \dots + \frac{a_{n-2}}{a_{n-1} a_n} + \frac{a_{n-1}}{a_n}$
	where $n, a_1, a_2,, a_n$ are positive integers and $1 = a_0 \le a_1 < < a_n$

AoPS Community

2010 Saudi Arabia IMO TST

2 Points *M* and *N* are considered in the interior of triangle *ABC* such that $\angle MAB = \angle NAC$ and $\angle MBA = \angle NBC$. Prove that

$$\frac{AM \cdot AN}{AB \cdot AC} + \frac{BM \cdot BN}{BA \cdot BC} + \frac{CM \cdot CN}{CA \cdot CB} = 1$$

Consider the arithmetic sequence 8, 21, 34, 47,
a) Prove that this sequence contains infinitely many integers written only with digit 9.
b) How many such integers less than 2010²⁰¹⁰ are in the sequence?

- Day IV
- **1** Find all pairs (m, n) of integers, $m, n \ge 2$ such that mn 1 divides $n^3 1$.
- **2** Let ABCD be a convex quadrilateral such that $\angle ABC = \angle ADC = 135^{\circ}$ and

 $AC^2BD^2 = 2AB \cdot BC \cdot CD \cdot DA.$

Prove that the diagonals of *ABCD* are perpendicular.

- **3** Consider the sequence $a_1 = 3$ and $a_{n+1} = \frac{3a_n^2+1}{2} a_n$ for n = 1, 2, ...Prove that if n is a power of 3 then n divides a_n .
- Day V
- 1 In triangle *ABC* the circumcircle has radius *R* and center *O* and the incircle has radius *r* and center $I \neq O$. Let *G* denote the centroid of triangle *ABC*. Prove that $IG \perp BC$ if and only if AB = AC or AB + AC = 3BC.
- **2** a) Prove that for each positive integer n there is a unique positive integer a_n such that

$$(1+\sqrt{5})^n = \sqrt{a_n} + \sqrt{a_n + 4^n}.$$

b) Prove that a_{2010} is divisible by $5 \cdot 4^{2009}$ and find the quotient

3 Find all primes p for which $p^2 - p + 1$ is a perfect cube.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.