Art of Problem Solving

AoPS Community

Saudi Arabia IMO Team Selection Test 2010

www.artofproblemsolving.com/community/c2744479
by parmenides51

- Day I

1 Let $A_{1} A_{2} \ldots A_{2010}$ be a regular 2010-gon. Find the number of obtuse triangles whose vertices are among $A_{1}, A_{2}, \ldots, A_{2010}$.

2 Find all functions $f, g: N \rightarrow N$ such that for all $m, n \in N$ the following relation holds:

$$
f(m)-f(n)=(m-n)(g(m)+g(n))
$$

Note: $N=\{0,1,2, \ldots\}$
3 Consider a circle of center O and a chord $A B$ of it (not a diameter). Take a point T on the ray $O B$. The perpendicular at T onto $O B$ meets the chord $A B$ at C and the circle at D and E. Denote by S the orthogonal projection of T onto the chord $A B$. Prove that $A S \cdot B C=T E \cdot T D$.

- Day II

1 Let $A B C$ be a triangle with $\angle B \geq 2 \angle C$. Denote by D the foot of the altitude from A and by M be the midpoint of $B C$. Prove that $D M \geq \frac{A B}{2}$.

2 The squares $O A B C$ and $O A_{1} B_{1} C_{1}$ are situated in the same plane and are directly oriented. Prove that the lines $A A_{1}, B B_{1}$, and $C C_{1}$ are concurrent.

3 Let $f: N \rightarrow N$ be a strictly increasing function such that $f(f(n))=3 n$, for all $n \in N$. Find $f(2010)$.

Note: $N=\{0,1,2, \ldots\}$

- Day III

1 Find all real numbers x that can be written as

$$
x=\frac{a_{0}}{a_{1} a_{2} . . a_{n}}+\frac{a_{1}}{a_{2} a_{3} . . a_{n}}+\frac{a_{2}}{a_{3} a_{4} . . a_{n}}+\ldots+\frac{a_{n-2}}{a_{n-1} a_{n}}+\frac{a_{n-1}}{a_{n}}
$$

where $n, a_{1}, a_{2}, \ldots, a_{n}$ are positive integers and $1=a_{0} \leq a_{1}<\ldots<a_{n}$

2 Points M and N are considered in the interior of triangle $A B C$ such that $\angle M A B=\angle N A C$ and $\angle M B A=\angle N B C$. Prove that

$$
\frac{A M \cdot A N}{A B \cdot A C}+\frac{B M \cdot B N}{B A \cdot B C}+\frac{C M \cdot C N}{C A \cdot C B}=1
$$

3 Consider the arithmetic sequence $8,21,34,47, \ldots$.
a) Prove that this sequence contains infinitely many integers written only with digit 9 .
b) How many such integers less than 2010^{2010} are in the sequence?

- Day IV
$1 \quad$ Find all pairs (m, n) of integers, $m, n \geq 2$ such that $m n-1$ divides $n^{3}-1$.
2 Let $A B C D$ be a convex quadrilateral such that $\angle A B C=\angle A D C=135^{\circ}$ and

$$
A C^{2} B D^{2}=2 A B \cdot B C \cdot C D \cdot D A
$$

Prove that the diagonals of $A B C D$ are perpendicular.
3 Consider the sequence $a_{1}=3$ and $a_{n+1}=\frac{3 a_{n}^{2}+1}{2}-a_{n}$ for $n=1,2, \ldots$.
Prove that if n is a power of 3 then n divides a_{n}.

- Day V

1 In triangle $A B C$ the circumcircle has radius R and center O and the incircle has radius r and center $I \neq O$. Let G denote the centroid of triangle $A B C$. Prove that $I G \perp B C$ if and only if $A B=A C$ or $A B+A C=3 B C$.

2 a) Prove that for each positive integer n there is a unique positive integer a_{n} such that

$$
(1+\sqrt{5})^{n}=\sqrt{a_{n}}+\sqrt{a_{n}+4^{n}}
$$

b) Prove that a_{2010} is divisible by $5 \cdot 4^{2009}$ and find the quotient

3 Find all primes p for which $p^{2}-p+1$ is a perfect cube.

