APMO 2016

www.artofproblemsolving.com/community/c274496
by cjquines0, shinichiman

- \quad Time allowed: 4 hours

Each problem is worth 7 points
1 We say that a triangle $A B C$ is great if the following holds: for any point D on the side $B C$, if P and Q are the feet of the perpendiculars from D to the lines $A B$ and $A C$, respectively, then the reflection of D in the line $P Q$ lies on the circumcircle of the triangle $A B C$. Prove that triangle $A B C$ is great if and only if $\angle A=90^{\circ}$ and $A B=A C$.
Senior Problems Committee of the Australian Mathematical Olympiad Committee
2 A positive integer is called fancy if it can be expressed in the form

$$
2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{100}}
$$

where $a_{1}, a_{2}, \cdots, a_{100}$ are non-negative integers that are not necessarily distinct. Find the smallest positive integer n such that no multiple of n is a fancy number.
Senior Problems Committee of the Australian Mathematical Olympiad Committee
3 Let $A B$ and $A C$ be two distinct rays not lying on the same line, and let ω be a circle with center O that is tangent to ray $A C$ at E and ray $A B$ at F. Let R be a point on segment $E F$. The line through O parallel to $E F$ intersects line $A B$ at P. Let N be the intersection of lines $P R$ and $A C$, and let M be the intersection of line $A B$ and the line through R parallel to $A C$. Prove that line $M N$ is tangent to ω.
Warut Suksompong, Thailand
4 The country Dreamland consists of 2016 cities. The airline Starways wants to establish some one-way flights between pairs of cities in such a way that each city has exactly one flight out of it. Find the smallest positive integer k such that no matter how Starways establishes its flights, the cities can always be partitioned into k groups so that from any city it is not possible to reach another city in the same group by using at most 28 flights.
Warut Suksompong, Thailand
$5 \quad$ Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
(z+1) f(x+y)=f(x f(z)+y)+f(y f(z)+x),
$$

for all positive real numbers x, y, z.

