AoPS Community

Saudi Arabia Team Selection Test for Balkan Math Olympiad 2010

www.artofproblemsolving.com/community/c2745358
by parmenides51

- Day I

1 Find all triples (x, y, z) of real numbers such that $x^{2}+y^{2}+z^{2}+1=x y+y z+z x+|x-2 y+z|$.
2 Let $A B C$ be an acute triangle and let $M N P Q$ be a square inscribed in the triangle such that $M, N \in B C, P \in A C, Q \in A B$. Prove that area $[M N P Q] \leq \frac{1}{2}$ area $[A B C]$.

3 Let $\left(a_{n}\right)_{n \geq o}$ and $\left(b_{n}\right)_{n \geq o}$ be sequences defined by $a_{n+2}=a_{n+1}+a_{n}, n=0,1, \ldots, a_{0}=1, a_{1}=2$, and $b_{n+2}=b_{n+1}+b_{n}, n=0,1, \ldots, b_{0}=2, b_{1}=1$. How many integers do the sequences have in common?

4 Let $f: N \rightarrow[0, \infty)$ be a function satisfying the following conditions:
a) $f(4)=2$
b) $\frac{1}{f(0)+f(1)}+\frac{1}{f(1)+f(2)}+\ldots+\frac{1}{f(n)+f(n+1)}=f(n+1)$ for all integers $n \geq 0$.

Find $f(n)$ in closed form.

- Day II
$1 \quad$ Find all pairs (x, y) of positive integers such that $x^{2}+y^{2}+33^{2}=2010 \sqrt{x-y}$.
2 Show that in any triangle $A B C$ with $\angle A=90^{\circ}$ the following inequality holds

$$
(A B-A C)^{2}\left(B C^{2}+4 A B \cdot A C\right)^{2}<2 B C^{6} .
$$

3 Let $a>0$ be a real number and let $f: R \rightarrow R$ be a function satisfying

$$
f\left(x_{1}\right)+f\left(x_{2}\right) \geq a f\left(x_{1}+x_{2}\right), \forall x_{1}, x_{2} \in R .
$$

Prove that

$$
f\left(x_{1}\right)+f\left(x_{2}\right)+\left(x_{3}\right) \geq \frac{3 a^{2}}{a+2} f\left(x_{1}+x_{2}+x_{3}\right), \forall x_{1}, x_{2}, x_{3} \in R
$$

4 In quadrilateral $A B C D$, diagonals $A C$ and $B D$ intersect at O. Denote by P, Q, R, S the orthogonal projections of O onto $A B, B C, C D, D A$, respectively. Prove that

$$
P A \cdot A B+R C \cdot C D=\frac{1}{2}\left(A D^{2}+B C^{2}\right)
$$

if and only if

$$
Q B \cdot B C+S D \cdot D A=\frac{1}{2}\left(A B^{2}+C D^{2}\right)
$$

- Day III

1 Find all non-empty sets S of nonzero real numbers such that
a) S has at most 5 elements
b) If x is in S, then so are $1-x$ and $\frac{1}{x}$.

2 Consider a triangle $A B C$ and a point P in its interior. Lines $P A, P B, P C$ intersect $B C, C A, A B$ at $A^{\prime}, B^{\prime}, C^{\prime}$, respectively. Prove that

$$
\frac{B A^{\prime}}{B C}+\frac{C B^{\prime}}{C A}+\frac{A C^{\prime}}{A B}=\frac{3}{2}
$$

if and only if at least two of the triangles $P A B, P B C, P C A$ have the same area.
3 Find all functions $f: R \rightarrow R$ such that

$$
x f(x+x y)=x f(x)+f\left(x^{2}\right) f(y)
$$

for all $x, y \in R$.
4 Find all triples (x, y, z) of integers such that

$$
\left\{\begin{array}{l}
x^{2} y+y^{2} z+z^{2} x=2010^{2} \\
x y^{2}+y z^{2}+z x^{2}=-2010
\end{array}\right.
$$

- Day IV

1 Find all triples (x, y, z) of positive integers such that $3^{x}+4^{y}=5^{z}$.
2 Quadrilateral $A B C D$ with perpendicular diagonals $A C$ and $B D$ is inscribed in a circle. Altitude $D E$ in triangle $A B D$ intersects diagonal $A C$ in F. Prove that $F B=B C$

3 How many integers in the set $\{1,2, \ldots, 2010\}$ divide $5^{2010!}-3^{2010!}$?

4 Let $a>0$. If the system

$$
\left\{\begin{array}{l}
a^{x}+a^{y}+a^{z}=14-a \\
x+y+z=1
\end{array}\right.
$$

has a solution in real numbers, prove that $a \leq 8$.

- Day V

1 Find all integers n for which $9 n+16$ and $16 n+9$ are both perfect squares.
2 Evaluate the sum

$$
1+2+3-4-5+6+7+8-9-10+\ldots-2010
$$

, where each three consecutive signs + are followed by two signs - .
3 Let $A B C$ be a right angled triangle with $\angle A=90^{\circ}$ and $B C=a, A C=b, A B=c$. Let d be a line passing trough the incenter of triangle and intersecting the sides $A B$ and $A C$ in P and Q, respectively.
(a) Prove that

$$
b \cdot\left(\frac{P B}{P A}\right)+c \cdot\left(\frac{Q C}{Q A}\right)=a
$$

(b) Find the minimum of

$$
\left(\frac{P B}{P A}\right)^{2}+\left(\frac{Q C}{Q A}\right)^{2}
$$

$4 \quad$ Find all primes p, q satisfying the equation $2 p^{q}-q^{p}=7$.

