

AoPS Community

2010 Saudi Arabia BMO TST

Saudi Arabia Team Selection Test for Balkan Math Olympiad 2010

www.artofproblemsolving.com/community/c2745358 by parmenides51

-	Day I
1	Find all triples (x, y, z) of real numbers such that $x^2 + y^2 + z^2 + 1 = xy + yz + zx + x - 2y + z $.
2	Let ABC be an acute triangle and let $MNPQ$ be a square inscribed in the triangle such that $M, N \in BC$, $P \in AC$, $Q \in AB$. Prove that $area [MNPQ] \le \frac{1}{2}area [ABC]$.
3	Let $(a_n)_{n\geq o}$ and $(b_n)_{n\geq o}$ be sequences defined by $a_{n+2} = a_{n+1} + a_n$, $n = 0, 1,, a_0 = 1$, $a_1 = 2$, and $b_{n+2} = b_{n+1} + b_n$, $n = 0, 1,, b_0 = 2$, $b_1 = 1$. How many integers do the sequences have in common?
4	Let $f: N \to [0,\infty)$ be a function satisfying the following conditions:
	a) $f(4) = 2$
	b) $\frac{1}{f(0)+f(1)} + \frac{1}{f(1)+f(2)} + \ldots + \frac{1}{f(n)+f(n+1)} = f(n+1)$ for all integers $n \ge 0$.
	Find $f(n)$ in closed form.
-	Day II
1	Find all pairs (x, y) of positive integers such that $x^2 + y^2 + 33^2 = 2010\sqrt{x-y}$.
2	Show that in any triangle ABC with $\angle A = 90^{\circ}$ the following inequality holds
	$(AB - AC)^2 (BC^2 + 4AB \cdot AC)^2 < 2BC^6.$
3	Let $a > 0$ be a real number and let $f : R \to R$ be a function satisfying
	$f(x_1) + f(x_2) \ge a f(x_1 + x_2), \forall x_1, x_2 \in R.$

Prove that

•

$$f(x_1) + f(x_2) + (x_3) \ge \frac{3a^2}{a+2}f(x_1 + x_2 + x_3), \forall x_1, x_2, x_3 \in \mathbb{R}$$

AoPS Community

_

2010 Saudi Arabia BMO TST

4 In quadrilateral *ABCD*, diagonals *AC* and *BD* intersect at *O*. Denote by *P*, *Q*, *R*, *S* the orthogonal projections of *O* onto *AB*, *BC*, *CD*, *DA*, respectively. Prove that

$$PA \cdot AB + RC \cdot CD = \frac{1}{2}(AD^2 + BC^2)$$

if and only if

$$QB \cdot BC + SD \cdot DA = \frac{1}{2}(AB^2 + CD^2)$$

-	Day III
1	Find all non-empty sets <i>S</i> of nonzero real numbers such that a) <i>S</i> has at most 5 elements b) If <i>x</i> is in <i>S</i> , then so are $1 - x$ and $\frac{1}{x}$.
2	Consider a triangle ABC and a point P in its interior. Lines PA , PB , PC intersect BC , CA , AB at A', B', C' , respectively. Prove that
	$\frac{BA'}{BC} + \frac{CB'}{CA} + \frac{AC'}{AB} = \frac{3}{2}$
	if and only if at least two of the triangles PAB , PBC , PCA have the same area.
3	Find all functions $f: R \to R$ such that
	$xf(x + xy) = xf(x) + f(x^2)f(y)$
	for all $x, y \in R$.
4	Find all triples (x, y, z) of integers such that
	$\begin{cases} x^2y + y^2z + z^2x = 2010^2\\ xy^2 + yz^2 + zx^2 = -2010 \end{cases}$
-	Day IV
1	Find all triples (x, y, z) of positive integers such that $3^x + 4^y = 5^z$.
1 2	Find all triples (x, y, z) of positive integers such that $3^x + 4^y = 5^z$. Quadrilateral <i>ABCD</i> with perpendicular diagonals <i>AC</i> and <i>BD</i> is inscribed in a circle. Altitude <i>DE</i> in triangle <i>ABD</i> intersects diagonal <i>AC</i> in <i>F</i> . Prove that <i>FB</i> = <i>BC</i>

AoPS Community

4 Let a > 0. If the system

$$a^{x} + a^{y} + a^{z} = 14 - a$$
$$x + y + z = 1$$

has a solution in real numbers, prove that $a \leq 8$.

-	Day V
1	Find all integers n for which $9n + 16$ and $16n + 9$ are both perfect squares.
2	Evaluate the sum $1+2+3-4-5+6+7+8-9-10+2010$
	, where each three consecutive signs $+$ are followed by two signs $$
3	Let ABC be a right angled triangle with $\angle A = 90^{\circ}$ and $BC = a$, $AC = b$, $AB = c$. Let d be a line passing trough the incenter of triangle and intersecting the sides AB and AC in P and Q , respectively. (a) Prove that
	$b \cdot \left(\frac{PB}{PA}\right) + c \cdot \left(\frac{QC}{QA}\right) = a$
	(b) Find the minimum of $\left(\frac{PB}{PA}\right)^2 + \left(\frac{QC}{QA}\right)^2$

4 Find all primes p, q satisfying the equation $2p^q - q^p = 7$.

Act of Problem Solving is an ACS WASC Accredited School.