

Saudi Arabia IMO Team Selection Test 2011

www.artofproblemsolving.com/community/c2745401

AoPS Community

2011 Saudi Arabia IMO TST

-	Day I
1	Let <i>I</i> be the incenter of a triangle <i>ABC</i> and let A', B', C' be midpoints of sides <i>BC</i> , <i>CA</i> , <i>AB</i> respectively. If $IA' = IB' = IC'$, then prove that triangle <i>ABC</i> is equilateral.
2	Consider the set $S = \{(a + b)^7 - a^7 - b^7 : a, b \in Z\}$. Find the greatest common divisor of all members in S .
3	Let n be a positive integer. Prove that at least one of the integers $[2^n \cdot \sqrt{2}]$, $[2^{n+1} \cdot \sqrt{2}]$,, $[2^{2n} \cdot \sqrt{2}]$ is even, where $[a]$ denotes the integer part of a .
-	Day II
1	Let a and b be integers such that $a - b = a^2c - b^2d$ for some consecutive integers c and d. Prove that $ a - b $ is a perfect square.
2	Let <i>ABC</i> be a triangle with $AB \neq AC$. Its incircle has center <i>I</i> and touches the side <i>BC</i> at point <i>D</i> . Line <i>AI</i> intersects the circumcircle ω of triangle <i>ABC</i> at <i>M</i> and <i>DM</i> intersects again ω at <i>P</i> . Prove that $\angle API = 90^{\circ}$.
3	Find all functions $f: R \to R$ such that
	2f(x) = f(x+y) + f(x+2y)
	, for all $x \in R$ and for all $y \ge 0$.
-	Day III
1	Let a, b, c be real numbers such that $ab + bc + ca = 1$. Prove that
	$\frac{(a+b)^2+1}{c^2+2} + \frac{(b+c)^2+1}{a^2+2} + \frac{(c+a)^2+1}{b^2+2} \ge 3$

2 In triangle ABC, let I_a , I_b , I_c be the centers of the excircles tangent to sides BC, CA, AB, respectively. Let P and Q be the tangency points of the excircle of center I_a with lines AB and AC. Line PQ intersects I_aB and I_aC at D and E. Let A_1 be the intersection of DC and BE. In an analogous way we define points B_1 and C_1 . Prove that AA_1 , BB_1 , CC_1 are concurrent.

AoPS Community

3	Let $f \in Z[X]$, $f = X^2 + aX + b$, be a quadratic polynomial. Prove that f has integer zeros if and only if for each positive integer n there is an integer u_n such that $n f(u_n)$.
-	Day IV
1	Find all integers n , $n \ge 2$, such that the numbers $1!, 2!,, (n-1)!$ give distinct remainders when divided by n .
2	Let <i>ABC</i> be a non-isosceles triangle with circumcenter <i>O</i> , incenter <i>I</i> , and orthocenter <i>H</i> . Prove that angle $\angle OIH$ is obtuse.
3	In acute triangle ABC , $\angle A = 20^o$. Prove that the triangle is isosceles if and only if
	$\sqrt[3]{a^3 + b^3 + c^3 - 3abc} = \min\{b, c\}$

, where a, b, c are the side lengths of triangle ABC.

AoPS Online 🔯 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.