Art of Problem Solving

AoPS Community

Saudi Arabia IMO Team Selection Test 2011

www.artofproblemsolving.com/community/c2745401
by parmenides51

- Day I

1 Let I be the incenter of a triangle $A B C$ and let $A^{\prime}, B^{\prime}, C^{\prime}$ be midpoints of sides $B C, C A, A B$, respectively. If $I A^{\prime}=I B^{\prime}=I C^{\prime}$, then prove that triangle $A B C$ is equilateral.

2 Consider the set $S=\left\{(a+b)^{7}-a^{7}-b^{7}: a, b \in Z\right\}$. Find the greatest common divisor of all members in S.

3 Let n be a positive integer. Prove that at least one of the integers $\left[2^{n} \cdot \sqrt{2}\right],\left[2^{n+1} \cdot \sqrt{2}\right], \ldots,\left[2^{2 n} \cdot \sqrt{2}\right]$ is even, where $[a]$ denotes the integer part of a.

- Day II

1 Let a and b be integers such that $a-b=a^{2} c-b^{2} d$ for some consecutive integers c and d. Prove that $|a-b|$ is a perfect square.

2 Let $A B C$ be a triangle with $A B \neq A C$. Its incircle has center I and touches the side $B C$ at point D. Line $A I$ intersects the circumcircle ω of triangle $A B C$ at M and $D M$ intersects again ω at P. Prove that $\angle A P I=90^{\circ}$.
$3 \quad$ Find all functions $f: R \rightarrow R$ such that

$$
2 f(x)=f(x+y)+f(x+2 y)
$$

, for all $x \in R$ and for all $y \geq 0$.

- Day III

1 Let a, b, c be real numbers such that $a b+b c+c a=1$. Prove that

$$
\frac{(a+b)^{2}+1}{c^{2}+2}+\frac{(b+c)^{2}+1}{a^{2}+2}+\frac{(c+a)^{2}+1}{b^{2}+2} \geq 3
$$

2 In triangle $A B C$, let I_{a}, I_{b}, I_{c} be the centers of the excircles tangent to sides $B C, C A, A B$, respectively. Let P and Q be the tangency points of the excircle of center I_{a} with lines $A B$ and $A C$. Line $P Q$ intersects $I_{a} B$ and $I_{a} C$ at D and E. Let A_{1} be the intersection of $D C$ and $B E$. In an analogous way we define points B_{1} and C_{1}. Prove that $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

3 Let $f \in Z[X], f=X^{2}+a X+b$, be a quadratic polynomial. Prove that f has integer zeros if and only if for each positive integer n there is an integer u_{n} such that $n \mid f\left(u_{n}\right)$.

- Day IV

1 Find all integers $n, n \geq 2$, such that the numbers 1 !, 2 !, $\ldots,(n-1)$! give distinct remainders when divided by n.

2 Let $A B C$ be a non-isosceles triangle with circumcenter O, incenter I, and orthocenter H. Prove that angle $\angle O I H$ is obtuse.

3 In acute triangle $A B C, \angle A=20^{\circ}$. Prove that the triangle is isosceles if and only if

$$
\sqrt[3]{a^{3}+b^{3}+c^{3}-3 a b c}=\min \{b, c\}
$$

, where a, b, c are the side lengths of triangle $A B C$.

