Art of Problem Solving

AoPS Community

Saudi Arabia Team Selection Test for Balkan Math Olympiad 2011

www.artofproblemsolving.com/community/c2745402
by parmenides51

- Day I

1 Let n be a positive integer. Find all real numbers $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\prod_{k=1}^{n}\left(x_{k}^{2}+(k+2) x_{k}+k^{2}+k+1\right)=\left(\frac{3}{4}\right)^{n}(n!)^{2}
$$

2 For any positive integer n, let a_{n} be the number of pairs (x, y) of integers satisfying $\left|x^{2}-y^{2}\right|=n$.
(a) Find a_{1432} and a_{1433}.
(b) Find a_{n}.

3 In an acute triangle $A B C$ the angle bisector $A L, L \in B C$, intersects its circumcircle at N. Let K and M be the projections of L onto sides $A B$ and $A C$. Prove that triangle $A B C$ and quadrilateral $A K N M$ have equal areas.

4 Consider a non-zero real number a such that $\{a\}+\left\{\frac{1}{a}\right\}=1$, where $\{x\}$ denotes the fractional part of x. Prove that for any positive integer $n,\left\{a^{n}\right\}+\left\{\frac{1}{a^{n}}\right\}=1$.

- Day II

1 Find all polynomials P with real coefficients such that for all $x, y, z \in R$,

$$
P(x)+P(y)+P(z)+P(x+y+z)=P(x+y)+P(y+z)+P(z+x)
$$

2 For each positive integer n let the set A_{n} consist of all numbers $\pm 1 \pm 2 \pm \ldots \pm n$. For example,

$$
A_{1}=\{-1,1\}, A_{2}=\{-3,-1,1,3\}, A_{3}=\{-6,-4,-2,0,2,4,6\} .
$$

Find the number of elements in A_{n}.
3 Let a, b, c be positive real numbers. Prove that

$$
\frac{1}{a+b+\frac{1}{a b c}+1}+\frac{1}{b+c+\frac{1}{a b c}+1}+\frac{1}{c+a+\frac{1}{a b c}+1} \leq \frac{a+b+c}{a+b+c+1}
$$

4 Let $A B C$ be a triangle with circumcenter O. Points P and Q are interior to sides $C A$ and $A B$, respectively. Circle ω passes through the midpoints of segments $B P, C Q, P Q$. Prove that if line $P Q$ is tangent to circle ω, then $O P=O Q$.

- Day III

1 Let $A B C D$ be a square of center O. The parallel to $A D$ through O intersects $A B$ and $C D$ at M and N and a parallel to $A B$ intersects diagonal $A C$ at P. Prove that

$$
O P^{4}+\left(\frac{M N}{2}\right)^{4}=M P^{2} \cdot N P^{2}
$$

2 Let n be a positive integer. Prove that all roots of the equation

$$
x(x+2)(x+4) \ldots(x+2 n)+(x+1)(x+3) \ldots(x+2 n-1)=0
$$

are real and irrational.
3 Let $A B C D E$ be a convex pentagon such that $\angle B A C=\angle C A D=\angle D A E$ and $\angle A B C=$ $\angle A C D=\angle A D E$. Diagonals $B D$ and $C E$ meet at P. Prove that $A P$ bisects side $C D$.

4 Let $\left(F_{n}\right)_{n \geq o}$ be the sequence of Fibonacci numbers: $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$, for every $n \geq 0$.
Prove that for any prime $p \geq 3, p$ divides $F_{2 p}-F_{p}$.

- Day IV

1 Prove that for any positive integer n there is an equiangular hexagon whose sidelengths are $n+1, n+2, \ldots, n+6$ in some order.

2 Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that $a_{1}+a_{2}+\ldots+a_{n}=0$ and $\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|=1$. Prove that

$$
\left|a_{1}+2 a_{2}+\ldots+n a_{n}\right| \leq \frac{n-1}{2}
$$

3 Consider a triangle $A B C$. Let A_{1} be the symmetric point of A with respect to the line $B C, B_{1}$ the symmetric point of B with respect to the line $C A$, and C_{1} the symmetric point of C with respect to the line $A B$. Determine the possible set of angles of triangle $A B C$ for which $A_{1} B_{1} C_{1}$ is equilateral.

4 Let $p \geq 3$ be a prime. For $j=1,2, \ldots, p-1$, let r_{j} be the remainder when the integer $\frac{j^{p-1}-1}{p}$ is divided by p.
Prove that

$$
r_{1}+2 r_{2}+\ldots+(p-1) r_{p-1} \equiv \frac{p+1}{2}(\bmod p)
$$

