AoPS Community

BMT - Geometry Rounds 2013-21

Berkeley Math Tournament for High School, 2013-2021, T stands for Tiebreaker

www.artofproblemsolving.com/community/c2746611
by parmenides51, mathdragon2000

- Geometry Round
2013.1 A rectangle with sides a and b has an area of 24 and a diagonal of length 11 . Find the perimeter of this rectangle.
2013.2 Two rays start from a common point and have an angle of 60 degrees. Circle C is drawn with radius 42 such that it is tangent to the two rays. Find the radius of the circle that has radius smaller than circle C and is also tangent to C and the two rays.
2013.3 Given a regular tetrahedron $A B C D$ with center O, find $\sin \angle A O B$.
2013.4 Two cubes A and B have different side lengths, such that the volume of cube A is numerically equal to the surface area of cube B. If the surface area of cube A is numerically equal to six times the side length of cube B, what is the ratio of the surface area of cube A to the volume of cube B ?
2013.5 Points A and B are fixed points in the plane such that $A B=1$. Find the area of the region consisting of all points P such that $\angle A P B>120^{\circ}$
2013.6 Let $A B C D$ be a cyclic quadrilateral where $A B=4, B C=11, C D=8$, and $D A=5$. If $B C$ and $D A$ intersect at X, find the area of $\triangle X A B$.
2013.7 Let $A B C$ be a triangle with $B C=5, C A=3$, and $A B=4$. Variable points P, Q are on segments $A B, A C$, respectively such that the area of $A P Q$ is half of the area of $A B C$. Let x and y be the lengths of perpendiculars drawn from the midpoint of $P Q$ to sides $A B$ and $A C$, respectively. Find the range of values of $2 y+3 x$.
2013.8 $A B C$ is an isosceles right triangle with right angle B and $A B=1 . A B C$ has an incenter at E. The excircle to $A B C$ at side $A C$ is drawn and has center P. Let this excircle be tangent to $A B$ at R. Draw T on the excircle so that $R T$ is the diameter. Extend line $B C$ and draw point D on $B C$ so that $D T$ is perpendicular to $R T$. Extend $A C$ and let it intersect with $D T$ at G. Let F be the incenter of $C D G$. Find the area of $\triangle E F P$.
2013.9 Let $A B C$ be a triangle. Points D, E, F are on segments $B C, C A, A B$, respectively. Suppose that $A F=10, F B=10, B D=12, D C=17, C E=11$, and $E A=10$. Suppose that the circumcircles of $\triangle B F D$ and $\triangle C E D$ intersect again at X. Find the circumradius of $\triangle E X F$.

AoPS Community

2013.10 Let D, E, and F be the points at which the incircle, ω, of $\triangle A B C$ is tangent to $B C, C A$, and $A B$, respectively. $A D$ intersects ω again at T. Extend rays $T E, T F$ to hit line $B C$ at E^{\prime}, F^{\prime}, respectively. If $B C=21, C A=16$, and $A B=15$, then find $\left|\frac{1}{D E^{\prime}}-\frac{1}{D F^{\prime}}\right|$.
2013.P1 Suppose a convex polygon has a perimeter of 1 . Prove that it can be covered with a circle of radius $1 / 4$.
2013.P2 From a point A construct tangents to a circle centered at point O, intersecting the circle at P and Q respectively. Let M be the midpoint of $P Q$. If K and L are points on circle O such that K, L, and A are collinear, prove $\angle M K O=\angle M L O$.
2014.1 Consider a regular hexagon with an incircle. What is the ratio of the area inside the incircle to the area of the hexagon?
2014.2 Regular hexagon $A B C D E F$ has side length 2 and center O. The point P is defined as the intersection of $A C$ and $O B$. Find the area of quadrilateral $O P C D$.
2014.3 Consider an isosceles triangle $A B C(A B=B C)$. Let D be on $B C$ such that $A D \perp B C$ and O be a circle with diameter $B C$. Suppose that segment $A D$ intersects circle O at E. If $C A=2$ what is $C E$?
2014.4 A cylinder with length ℓ has a radius of 6 meters, and three spheres with radii 3,4 , and 5 meters are placed inside the cylinder. If the spheres are packed into the cylinder such that ℓ is minimized, determine the length ℓ.
2014.5 In a 100-dimensional hypercube, each edge has length 1 . The box contains $2^{100}+1$ hyperspheres with the same radius r. The center of one hypersphere is the center of the hypercube, and it touches all the other spheres. Each of the other hyperspheres is tangent to 100 faces of the hypercube. Thus, the hyperspheres are tightly packed in the hypercube. Find r.
2014.6 Square $A B C D$ has side length 5 and arc $B D$ with center A. E is the midpoint of $A B$ and $C E$ intersects arc $B D$ at F. G is placed onto $B C$ such that $F G$ is perpendicular to $B C$. What is the length of $F G$?
2014.7 Consider a parallelogram $A B C D$. E is a point on ray $\overrightarrow{A D}$. $B E$ intersects $A C$ at F and $C D$ at G. If $B F=E G$ and $B C=3$, find the length of $A E$
2014.8 Semicircle O has diameter $A B=12$. Arc $A C=135^{\circ}$. Let D be the midpoint of arc $A C$. Compute the region bounded by the lines $C D$ and $D B$ and the arc $C B$.
2014.9 Let $A B C$ be a triangle. Construct points B^{\prime} and C^{\prime} such that $A C B^{\prime}$ and $A B C^{\prime}$ are equilateral triangles that have no overlap with $\triangle A B C$. Let $B B^{\prime}$ and $C C^{\prime}$ intersect at X . If $A X=3, B C=4$,
and $C X=5$, find the area of quadrilateral $B C B^{\prime} C^{\prime}$.
2014.10 Consider 8 points that are a knight's move away from the origin (i.e., the eight points $\{(2,1)$ $,(2,-1),(1,2),(1,-2),(-1,2),(-1,-2),(-2,1),(-2,-1)\})$. Each point has probability $\frac{1}{2}$ of being visible. What is the expected value of the area of the polygon formed by points that are visible? (If exactly $0,1,2$ points appear, this area will be zero.)
2014.P1 Let $A B C$ be a triangle. Let r denote the inradius of $\triangle A B C$. Let r_{a} denote the A-exradius of $\triangle A B C$. Note that the A-excircle of $\triangle A B C$ is the circle that is tangent to segment $B C$, the extension of ray $A B$ beyond B and the extension of $A C$ beyond C. The A-exradius is the radius of the A-excircle. Define r_{b} and r_{c} analogously. Prove that

$$
\frac{1}{r}=\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}
$$

2014.P2 Let $A B C$ be a fixed scalene triangle. Suppose that X, Y are variable points on segments $A B$, $A C$, respectively such that $B X=C Y$. Prove that the circumcircle of $\triangle A X Y$ passes through a fixed point other than A.
2015.1 Let $A B C$ be a triangle. The angle bisectors of $\angle A B C$ and $\angle A C B$ intersect at D. If $\angle B A C=80^{\circ}$, what are all possible values for $\angle B D C$?
2015.2 $A B C D E F$ is a regular hexagon. Let R be the overlap between $\triangle A C E$ and $\triangle B D F$. What is the area of R divided by the area of $A B C D E F$?
2015.3 Let M be on segment $B C$ of $\triangle A B C$ so that $A M=3, B M=4$, and $C M=5$. Find the largest possible area of $\triangle A B C$.
2015.4 Let $A B C D$ be a rectangle. Circles C_{1} and C_{2} are externally tangent to each other. Furthermore, C_{1} is tangent to $A B$ and $A D$, and C_{2} is tangent to $C B$ and $C D$. If $A B=18$ and $B C=25$, then find the sum of the radii of the circles.
2015.5 Let $A=(1,0), B=(0,1)$, and $C=(0,0)$. There are three distinct points, P, Q, R, such that $\{A, B, C, P\},\{A, B, C, Q\},\{A, B, C, R\}$ are all parallelograms (vertices unordered). Find the area of $\triangle P Q R$.
2015.6 Let C be the sphere $x^{2}+y^{2}+(z-1)^{2}=1$. Point P on C is $(0,0,2)$. Let $Q=(14,5,0)$. If $P Q$ intersects C again at Q^{\prime}, then find the length $P Q^{\prime}$
2015.7 Define $A=(1,0,0), B=(0,1,0)$, and P as the set of all points (x, y, z) such that $x+y+z=0$. Let P be the point on P such that $d=A P+P B$ is minimized. Find d^{2}.
2015.8 Suppose that $A=\left(\frac{1}{2}, \sqrt{3}\right)$. Suppose that B, C, D are chosen on the ellipse $x^{2}+(y / 2)^{2}=1$ such that the area of $A B C D$ is maximized. Assume that A, B, C, D lie on the ellipse going counterclockwise. What are all possible values of B ?
2015.9 Let $A B C$ be a triangle. Suppose that a circle with diameter $B C$ intersects segments $C A, A B$ at E, F, respectively. Let D be the midpoint of $B C$. Suppose that $A D$ intersects $E F$ at X. If $A B=\sqrt{9}, A C=\sqrt{10}$, and $B C=\sqrt{11}$, what is $\frac{E X}{X F}$?
2015.10 Let $A B C$ be a triangle with points E, F on $C A, A B$, respectively. Circle C_{1} passes through E, F and is tangent to segment $B C$ at D. Suppose that $A E=A F=E F=3, B F=1$, and $C E=2$. What is $\frac{E D^{2}}{F D^{2}}$?
2015.P1 Suppose that circles C_{1} and C_{2} intersect at X and Y. Let A, B be on C_{1}, C_{2}, respectively, such that A, X, B lie on a line in that order. Let A, C be on C_{1}, C_{2}, respectively, such that A, Y, C lie on a line in that order. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be another similarly defined triangle with $A \neq A^{\prime}$. Prove that $B B^{\prime}=C C^{\prime}$.
2015.P2 Suppose that fixed circle C_{1} with radius $a>0$ is tangent to the fixed line ℓ at A. Variable circle C_{2}, with center X, is externally tangent to C_{1} at $B \neq A$ and ℓ at C. Prove that the set of all X is a parabola minus a point
2015.T1 Let $A B C D$ be a parallelogram. Suppose that E is on line $D C$ such that C lies on segment $E D$. Then say lines $A E$ and $B D$ intersect at X and lines $C X$ intersects AB at F . If $A B=7, B C=13$, and $C E=91$, then find $\frac{A F}{F B}$.
2015.T2 The unit square $A B C D$ has E as midpoint of $A D$ and a circle of radius r tangent to $A B, B C$, and $C E$. Determine r.
2015.T3 The permutohedron of order 3 is the hexagon determined by points $(1,2,3),(1,3,2),(2,1,3)$, $(2,3,1),(3,1,2)$, and $(3,2,1)$. The pyramid determined by these six points and the origin has a unique inscribed sphere of maximal volume. Determine its radius.
2016.1 A $2 \times 4 \times 8$ rectangular prism and a cube have the same volume. What is the difference between their surface areas?
2016.2 Cyclic quadrilateral $A B C D$ has side lengths $A B=6, B C=7, C D=7, D A=6$. What is the area of $A B C D$?
2016.3 Let S be the set of all non-degenerate triangles with integer sidelengths, such that two of the sides are 20 and 16 . Suppose we pick a triangle, at random, from this set. What is the probability that it is acute?

AoPS Community

BMT - Geometry Rounds 2013-21
2016.4 $A B C$ is an equilateral triangle, and $A D E F$ is a square. If D lies on side $A B$ and E lies on side $B C$, what is the ratio of the area of the equilateral triangle to the area of the square?
2016.5 Convex pentagon $A B C D E$ has the property that $\angle A D B=20^{\circ}, \angle B E C=16^{\circ}, \angle C A D=3^{\circ}$, and $\angle D B E=12^{\circ}$. What is the measure of $\angle E C A$?
2016.6 Triangle $A B C$ has sidelengths $A B=13, A C=14$, and $B C=15$ and centroid G. What is the area of the triangle with sidelengths $A G, B G$, and $C G$
2016.7 Let $A B C$ be a right triangle with $A B=B C=2$. Construct point D such that $\angle D A C=30^{\circ}$ and $\angle D C A=60^{\circ}$, and $\angle B C D>90^{\circ}$. Compute the area of triangle $B C D$.
2016.8 A regular unit 7-simplex is a polytope in 7 -dimensional space with 8 vertices that are all exactly a distance of 1 apart. (It is the 7 -dimensional analogue to the triangle and the tetrahedron.) In this 7 -dimensional space, there exists a point that is equidistant from all 8 vertices, at a distance d. Determine d.
2016.9 Given right triangle $A B C$ with right angle at C, construct three external squares $A B D E, B C F G$, and $A C H I$. If $D G=19$ and $E I=22$, compute the length of $F H$.
2016.10 Triangle $A B C$ has side lengths $A B=5, B C=9$, and $A C=6$. Define the incircle of $A B C$ to be C_{1}. Then, define C_{i} for $i>1$ to be externally tangent to C_{i-1} and tangent to $A B$ and $B C$. Compute the sum of the areas of all circles C_{n}.
2017.1 What is the largest n such that there exists a non-degenerate convex n-gon such that each of its angles are an integer number of degrees, and are all distinct?
2017.2 Let S be the set of points A in the xy-plane such that the four points $A,(2,3),(-1,0)$, and $(0,6)$ form the vertices of a parallelogram. Let P be the convex polygon whose vertices are the points in S. What is the area of P ?
2017.3 Let $A B C D E F$ be a regular hexagon with side length 1 . Now, construct square $A G D Q$. What is the area of the region inside the hexagon and not the square?
2017.4 How many lattice points (v, w, x, y, z) does a 5 -sphere centered on the origin, with radius 3 , contain on its surface or in its interior?
2017.5 Suppose the side lengths of triangle $A B C$ are the roots of polynomial $x^{3}-27 x^{2}+222 x-540$. What is the product of its inradius and circumradius?
2017.6 Given a cube with side length 1 , we perform six cuts as follows: one cut parallel to the $x y$-plane, two cuts parallel to the $y z$-plane, and three cuts parallel to the $x z$-plane, where the cuts are made uniformly independent of each other. What is the expected value of the volume of the largest piece?
2017.7 Determine the maximal area triangle such that all of its vertices satisfy $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.
2017.8 Given a circle of radius 25 , consider the set of triangles with area at least 768 . What is the area of the intersection of all the triangles in this set?
2017.9 Let $\triangle A B C$ be a triangle. Let D be the point on $B C$ such that $D A$ is tangent to the circumcircle of $A B C$. Let E be the point on the circumcircle of $A B C$ such that $D E$ is tangent to the circumcircle of $A B C$, but $E \neq A$. Let F be the intersection of $A E$ and $B C$. Given that $B F / F C=4 / 5$, find the maximum possible value for $\sin \angle A C B /$
2017.10 Colorado and Wyoming are both defined to be 4 degrees tall in latitude and 7 degree wide in longitude. In particular, Colorado is defined to be at $37^{\circ} \mathrm{N}$ to $41^{\circ} \mathrm{N}$, and $102^{\circ} 03^{\prime} \mathrm{W}$ to $109^{\circ} 03^{\prime} \mathrm{W}$, whereas Wyoming is defined to be $41^{\circ} N$ to $45^{\circ} N$, and $104^{\circ} 03^{\prime} W$ to $111^{\circ} 03^{\prime} W$. Assuming Earth is a perfect sphere with radius R, what is the ratio of the areas of Wyoming to Colorado, in terms of R ?
2018.1 A cube has side length 5 . Let S be its surface area and V its volume. Find $\frac{S^{3}}{V^{2}}$.
2018.2 A 1 by 1 square $A B C D$ is inscribed in the circle m. Circle n has radius 1 and is centered around A. Let S be the set of points inside of m but outside of n. What is the area of S ?
2018.3 If A is the area of a triangle with perimeter 1 , what is the largest possible value of A^{2} ?
2018.4 There are six lines in the plane. No two of them are parallel and no point lies on more than three lines. What is the minimum possible number of points that lie on at least two lines?
2018.5 A point is picked uniformly at random inside of a square. Four segments are then drawn in connecting the point to each of the vertices of the square, cutting the square into four triangles. What is the probability that at least two of the resulting triangles are obtuse?
2018.6 A triangle T has all integer side lengths and at most one of its side lengths is greater than ten. What is the largest possible area of T ?
2018.7 A line in the $x y$-plane has positive slope, passes through the point $(x, y)=(0,29)$, and lies tangent to the ellipse defined by $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$. What is the slope of the line?
2018.8 What is the largest possible area of a triangle with largest side length 39 and inradius 10 ?
2018.9 What is the least integer a greater than 14 so that the triangle with side lengths $a-1$, a, and $a+1$ has integer area?

AoPS Community

BMT - Geometry Rounds 2013-21

2018.10 A plane cuts a sphere of radius 1 into two pieces, one of which has three times the surface area of the other. What is the area of the disk that the sphere cuts out of the plane?
2018.T1 Line segment $\overline{A E}$ of length 17 bisects $\overline{D B}$ at a point C. If $\overline{A B}=5, \overline{B C}=6$ and $\angle B A C=78^{\circ}$ degrees, calculate $\angle C D E$.
2018.T2 Points A, B, C are chosen on the boundary of a circle with center O so that $\angle B A C$ encloses an arc of 120 degrees. Let D be chosen on $\overline{B A}$ so that $\angle A O D$ is a right angle. Extend $\overline{C D}$ so that it intersects with O again at point P. What is the measure of the arc, in degrees, that is enclosed by $\angle A C P$? Please use the $\tan ^{-1}$ function to express your answer.
2018.T3 Consider a regular polygon with 2^{n} sides, for $n \geq 2$, inscribed in a circle of radius 1 . Denote the area of this polygon by A_{n}. Compute $\prod_{i=2}^{\infty} \frac{A_{i}}{A_{i+1}}$
2019.1 Consider the figure (attached), where every small triangle is equilateral with side length 1 . Compute the area of the polygon $A E K S$. https://cdn.artofproblemsolving.com/attachments/c/7/671748fe0fce7b8f89532ca66011d119f9b7a png
Posted for the link in the related post collection (https://artof problemsolving.com/community/ c2503497_2019_bmt_spring), with the figure
2019.2 A set of points in the plane is called full if every triple of points in the set are the vertices of a non-obtuse triangle. What is the largest size of a full set?
2019.3 Let $A B C D$ be a parallelogram with $B C=17$. Let M be the midpoint of $\overline{B C}$ and let N be the point such that $D A N M$ is a parallelogram. What is the length of segment $\overline{N C}$?
2019.4 The area of right triangle $A B C$ is 4 , and the length of hypotenuse $A B$ is 12 . Compute the perimeter of $\triangle A B C$.
2019.5 Find the area of the set of all points z in the complex plane that satisfy $|z-3 i|+|z-4| \leq 5 \sqrt{2}$.
2019.6 Let $\triangle A B E$ be a triangle with $\frac{A B}{3}=\frac{B E}{4}=\frac{E A}{5}$. Let $D \neq A$ be on line $\overline{A E}$ such that $A E=E D$ and D is closer to E than to A. Moreover, let C be a point such that $B C D E$ is a parallelogram. Furthermore, let M be on line $\overline{C D}$ such that $\overline{A M}$ bisects $\angle B A E$, and let P be the intersection of $\overline{A M}$ and $\overline{B E}$. Compute the ratio of $P M$ to the perimeter of $\triangle A B E$.
2019.7 Points A, B, C, D are vertices of an isosceles trapezoid, with $\overline{A B}$ parallel to $\overline{C D}, A B=1, C D=$ 2, and $B C=1$. Point E is chosen uniformly and at random on $\overline{C D}$, and let point F be the point on $\overline{C D}$ such that $E C=F D$. Let G denote the intersection of $\overline{A E}$ and $\overline{B F}$, not necessarily in the trapezoid. What is the probability that $\angle A G B>30^{\circ}$?
2019.8 Let $\triangle A B C$ be a triangle with $A B=13, B C=14$, and $C A=15$. Let G denote the centroid of $\triangle A B C$, and let G_{A} denote the image of G under a reflection across $\overline{B C}$, with G_{B} the image of G under a reflection across $\overline{A C}$, and G_{C} the image of G under a reflection across $\overline{A B}$. Let O_{G} be the circumcenter of $\triangle G_{A} G_{B} G_{C}$ and let X be the intersection of $\overline{A O_{G}}$ with $\overline{B C}$. Let Y denote the intersection of $\overline{A G}$ with $\overline{B C}$. Compute $X Y$.
2019.9 Let $A B C D$ be a tetrahedron with $\angle A B C=\angle A B D=\angle C B D=90^{\circ}$ and $A B=B C$. Let E, F, G be points on $\overline{A D}, B D$, and $\overline{C D}$, respectively, such that each of the quadrilaterals $A E F B, B F G C$, and $C G E A$ have an inscribed circle. Let r be the smallest real number such that $\frac{[\triangle E F G]}{[\triangle A B C]} \leq r$ for all such configurations A, B, C, D, E, F, G. If r can be expressed as $\frac{\sqrt{a-b \sqrt{c}}}{d}$ where a, b, c, d are positive integers with $\operatorname{gcd}(a, b)$ squarefree and c squarefree, find $a+b+c+d$.
Note: Here, $[P]$ denotes the area of polygon P. (This wasn't in the original test; instead they used the notation area (P), which is clear but frankly cumbersome. : P)
2019.10 A 3-4-5 point of a triangle $A B C$ is a point P such that the ratio $A P: B P: C P$ is equivalent to the ratio $3: 4: 5$. If $\triangle A B C$ is isosceles with base $B C=12$ and $\triangle A B C$ has exactly one $3-4-5$ point, compute the area of $\triangle A B C$.
2019.T1 We inscribe a circle ω in equilateral triangle $A B C$ with radius 1 . What is the area of the region inside the triangle but outside the circle?
2019.T2 Define the inverse of triangle $A B C$ with respect to a point O in the following way: construct the circumcircle of $A B C$ and construct lines $A O, B O$, and $C O$. Let A^{\prime} be the other intersection of $A O$ and the circumcircle (if $A O$ is tangent, then let $A^{\prime}=A$). Similarly define B^{\prime} and C^{\prime}. Then $A^{\prime} B^{\prime} C^{\prime}$ is the inverse of $A B C$ with respect to O. Compute the area of the inverse of the triangle given in the plane by $A(-6,-21), B(-23,10), C(16,23)$ with respect to $O(1,3)$.
2019.T3 We say that a quadrilateral Q is tangential if a circle can be inscribed into it, i.e. there exists a circle C that does not meet the vertices of Q, such that it meets each edge at exactly one point. Let N be the number of ways to choose four distinct integers out of $\{1, \ldots, 24\}$ so that they form the side lengths of a tangential quadrilateral. Find the largest prime factor of N.
2020.1 A Yule log is shaped like a right cylinder with height 10 and diameter 5 . Freya cuts it parallel to its bases into 9 right cylindrical slices. After Freya cut it, the combined surface area of the slices of the Yule log increased by $a \pi$. Compute a.
2020.2 Let O be a circle with diameter $A B=2$. Circles O_{1} and O_{2} have centers on $\overline{A B}$ such that O is tangent to O_{1} at A and to O_{2} at B, and O_{1} and O_{2} are externally tangent to each other. The minimum possible value of the sum of the areas of O_{1} and O_{2} can be written in the form $\frac{m \pi}{n}$
where m and n are relatively prime positive integers. Compute $m+n$.
2020.3 Right triangular prism $A B C D E F$ with triangular faces $\triangle A B C$ and $\triangle D E F$ and edges $\overline{A D}$, $\overline{B E}$, and $\overline{C F}$ has $\angle A B C=90^{\circ}$ and $\angle E A B=\angle C A B=60^{\circ}$. Given that $A E=2$, the volume of $A B C D E F$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.
https://cdn.artofproblemsolving.com/attachments/4/7/25fbe2ce2df50270b48cc503a8af4e0c01302 png
2020.4 Alice is standing on the circumference of a large circular room of radius 10 . There is a circular pillar in the center of the room of radius 5 that blocks Alice's view. The total area in the room Alice can see can be expressed in the form $\frac{m \pi}{n}+p \sqrt{q}$, where m and n are relatively prime positive integers and p and q are integers such that q is square-free. Compute $m+n+p+q$. (Note that the pillar is not included in the total area of the room.) https://cdn.artofproblemsolving.com/attachments/1/9/a744291a61df286735d63d8eb09e25d462785 png
2020.5 Let $A_{1}=(0,0), B_{1}=(1,0), C_{1}=(1,1), D_{1}=(0,1)$. For all $i>1$, we recursively define

$$
\begin{aligned}
& A_{i}=\frac{1}{2020}\left(A_{i-1}+2019 B_{i-1}\right), B_{i}=\frac{1}{2020}\left(B_{i-1}+2019 C_{i-1}\right) \\
& C_{i}=\frac{1}{2020}\left(C_{i-1}+2019 D_{i-1}\right), D_{i}=\frac{1}{2020}\left(D_{i-1}+2019 A_{i-1}\right)
\end{aligned}
$$

where all operations are done coordinate-wise.
https://cdn.artofproblemsolving.com/attachments/8/7/9b6161656ed2bc70510286dc8cb75cc5bde6c png
If $\left[A_{i} B_{i} C_{i} D_{i}\right]$ denotes the area of $A_{i} B_{i} C_{i} D_{i}$, there are positive integers a, b, and c such that $\sum_{i=1}^{\infty}\left[A_{i} B_{i} C_{i} D_{i}\right]=\frac{a^{2} b}{c}$, where b is square-free and c is as small as possible. Compute the value of $a+b+c$
2020.6 A tetrahedron has four congruent faces, each of which is a triangle with side lengths 6,5 , and 5. If the volume of the tetrahedron is V, compute V^{2}
2020.7 Circle Γ has radius 10 , center O, and diameter $\overline{A B}$. Point C lies on Γ such that $A C=12$. Let P be the circumcenter of $\triangle A O C$. Line $A P$ intersects Γ at Q, where Q is different from A. Then the value of $\frac{A P}{A Q}$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.
2020.8 Let triangle $\triangle A B C$ have $A B=17, B C=14, C A=12$. Let M_{A}, M_{B}, M_{C} be midpoints of $\overline{B C}$, $\overline{A C}$, and $\overline{A B}$ respectively. Let the angle bisectors of A, B, and C intersect $\overline{B C}, \overline{A C}$, and $\overline{A B}$ at P, Q, and R, respectively. Reflect M_{A} about $\overline{A P}, M_{B}$ about $\overline{B Q}$, and M_{C} about $\overline{C R}$ to obtain M_{A}^{\prime},
$M_{B}^{\prime}, M_{C}^{\prime}$, respectively. The lines $A M_{A}^{\prime}, B M_{B}^{\prime}$, and $C M_{C}^{\prime}$ will then intersect $\overline{B C}, \overline{A C}$, and $\overline{A B}$ at D, E, and F, respectively. Given that $\overline{A D}, \overline{B E}$, and $\overline{C F}$ concur at a point K inside the triangle, in simplest form, the ratio $[K A B]:[K B C]:[K C A]$ can be written in the form $p: q: r$, where p, q and r are relatively prime positive integers and $[X Y Z]$ denotes the area of $\triangle X Y Z$. Compute $p+q+r$.
2020.9 The Fibonacci numbers F_{n} are defined as $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for all $n>2$. Let A be the minimum area of a (possibly degenerate) convex polygon with 2020 sides, whose side lengths are the first 2020 Fibonacci numbers $F_{1}, F_{2}, \ldots, F_{2020}$ (in any order). A degenerate convex polygon is a polygon where all angles are $\leq 180^{\circ}$. If A can be expressed in the form

$$
\frac{\sqrt{\left(F_{a}-b\right)^{2}-c}}{d}
$$

, where a, b, c and d are positive integers, compute the minimal possible value of $a+b+c+d$.
2020.10 Let E be an ellipse where the length of the major axis is 26 , the length of the minor axis is 24 , and the foci are at points R and S. Let A and B be points on the ellipse such that $R A S B$ forms a non-degenerate quadrilateral, lines $R A$ and $S B$ intersect at P with segment $P R$ containing A, and lines $R B$ and $A S$ intersect at Q with segment $Q R$ containing B. Given that $R A=A S$, $A P=26$, the perimeter of the non-degenerate quadrilateral $R P S Q$ is $m+\sqrt{n}$, where m and n are integers. Compute $m+n$.
2020.T1 Given a regular hexagon, a circle is drawn circumscribing it and another circle is drawn inscribing it. The ratio of the area of the larger circle to the area of the smaller circle can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.
2020.T2 Quadrilateral $A B C D$ is cyclic with $A B=C D=6$. Given that $A C=B D=8$ and $A D+3=$ $B C$, the area of $A B C D$ can be written in the form $\frac{p \sqrt{q}}{r}$, where p, q, and r are positive integers such that p and r are relatively prime and that q is square-free. Compute $p+q+r$.
2020.T3 In unit cube $A B C D E F G H$ (with faces $A B C D, E F G H$ and connecting vertices labeled so that $\overline{A E}, \overline{B F}, \overline{C G}, \overline{D H}$ are edges of the cube), L is the midpoint of $G H$. The area of $\triangle C A L$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.
2021.1 Shreyas has a rectangular piece of paper $A B C D$ such that $A B=20$ and $A D=21$. Given that Shreyas can make exactly one straight-line cut to split the paper into two pieces, compute the maximum total perimeter of the two pieces
2021.2 Compute the area of the smallest triangle which can contain six congruent, non-overlapping unit circles.

AoPS Community

BMT - Geometry Rounds 2013-21

2021.3 In quadrilateral $A B C D$, suppose that $\overline{C D}$ is perpendicular to $\overline{B C}$ and $\overline{D A}$. Point E is chosen on segment $\overline{C D}$ such that $\angle A E D=\angle B E C$. If $A B=6, A D=7$, and $\angle A B C=120^{\circ}$, compute $A E+E B$.
2021.4 An equilateral polygon has unit side length and alternating interior angle measures of 15° and 300°. Compute the area of this polygon.
2021.5 Let circles ω_{1} and ω_{2} intersect at P and Q. Let the line externally tangent to both circles that is closer to Q touch ω_{1} at A and ω_{2} at B. Let point T lie on segment $P Q$ such that $\angle A T B=90^{\circ}$. Given that $A T=6, B T=8$, and $P T=4$, compute $P Q$.
2021.6 Consider 27 unit-cubes assembled into one $3 \times 3 \times 3$ cube. Let A and B be two opposite corners of this large cube. Remove the one unit-cube not visible from the exterior, along with all six unit-cubes in the center of each face. Compute the minimum distance an ant has to walk along the surface of the modified cube to get from A to B. https://cdn.artofproblemsolving.com/attachments/0/5/d3aa802eae40cfe717088445daabd5e71946s png
2021.7 The line ℓ passes through vertex B and the interior of regular hexagon $A B C D E F$. If the distances from ℓ to the vertices A and C are 7 and 4, respectively, compute the area of hexagon $A B C D E F$.
2021.8 Let $\triangle A B C$ be a triangle with $A B=15, A C=13, B C=14$, and circumcenter O. Let ℓ be the line through A perpendicular to segment $B C$. Let the circumcircle of $\triangle A O B$ and the circumcircle of $\triangle A O C$ intersect ℓ at points X and Y (other than A), respectively. Compute the length of $\overline{X Y}$
2021.9 Let $A B C D$ be a convex quadrilateral such that $\triangle A B C$ is equilateral. Let P be a point inside the quadrilateral such that $\triangle A P D$ is equilateral and $\angle P C D=30^{\circ}$. Given that $C P=2$ and $C D=3$, compute the area of the triangle formed by P, the midpoint of segment $\overline{B C}$, and the midpoint of segment $\overline{A B}$.
2021.10 Consider $\triangle A B C$ such that $C A+A B=3 B C$. Let the incircle ω touch segments $\overline{C A}$ and $\overline{A B}$ at E and F, respectively, and define P and Q such that segments $\overline{P E}$ and $\overline{Q F}$ are diameters of ω. Define the function D of a point K to be the sum of the distances from K to P and Q (i.e. $D(K)=K P+K Q$). Let W, X, Y, and Z be points chosen on lines $\overleftrightarrow{B C}, \overleftrightarrow{C E}, \overleftrightarrow{E F}$, and $\overleftrightarrow{F B}$, respectively. Given that $B C=\sqrt{133}$ and the inradius of $\triangle A B C$ is $\sqrt{14}$, compute the minimum value of $D(W)+D(X)+D(Y)+D(Z)$.
2021.T1 Regular hexagon NOSAME with side length 1 and square $U D O N$ are drawn in the plane such that $U D O N$ lies outside of NOSAME. Compute $[S A N D]+[S E N D]$, the sum of the areas of quadrilaterals $S A N D$ and $S E N D$.
2021.T2 Let $\triangle A_{0} B_{0} C_{0}$ be an equilateral triangle with area 1 , and let A_{1}, B_{1}, C_{1} be the midpoints of $\overline{A_{0} B_{0}}, \overline{B_{0} C_{0}}$, and $\overline{C_{0} A_{0}}$, respectively. Furthermore, set A_{2}, B_{2}, C_{2} as the midpoints of segments $\overline{A_{0} A_{1}}, \overline{B_{0} B_{1}}$, and $\overline{C_{0} C_{1}}$ respectively. For $n \geq 1, A_{2 n+1}$ is recursively defined as the midpoint of $A_{2 n} A_{2 n-1}$, and $A_{2 n+2}$ is recursively defined as the midpoint of $\overline{A_{2 n+1} A_{2 n-1}}$. Recursively define B_{n} and C_{n} the same way. Compute the value of $\lim _{n \rightarrow \infty}\left[A_{n} B_{n} C_{n}\right]$, where $\left[A_{n} B_{n} C_{n}\right]$ denotes the area of triangle $\triangle A_{n} B_{n} C_{n}$.
2021.T3 Right triangle $\triangle A B C$ with its right angle at B has angle bisector $\overline{A D}$ with D on $\overline{B C}$, as well as altitude $\overline{B E}$ with E on $\overline{A C}$. If $\overline{D E} \perp \overline{B C}$ and $A B=1$, compute $A C$.

