AoPS Community

Greece Team Selection Test 2008

www.artofproblemsolving.com/community/c274663
by gavrilos
$1 \quad$ Find all possible values of $a \in \mathbb{R}$ and $n \in \mathbb{N}^{*}$ such that $f(x)=(x-1)^{n}+(x-2)^{2 n+1}+(1-$ $\left.x^{2}\right)^{2 n+1}+a$
is divisible by $\phi(x)=x^{2}-x+1$
2 In a village X_{0} there are 80 tourists who are about to visit 5 nearby villages $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$. Each of them has chosen to visit only one of them. However,there are cases when the visit in a village forces the visitor to visit other villages among $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$. Each tourist visits only the village he has chosen and the villages he is forced to.If $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ are totally visited by $40,60,65,70,75$ tourists respectively,then find how many tourists had chosen each one of them and determine all the ordered pairs $\left(X_{i}, X_{j}\right): i, j \in\{1,2,3,4,5\}$ which are such that,the visit in X_{i} forces the visitor to visit X_{j} as well.

2 The bisectors of the angles $\angle A, \angle B, \angle C$ of a triangle $\triangle A B C$ intersect with the circumcircle $c_{1}(O, R)$ of $\triangle A B C$ at A_{2}, B_{2}, C_{2} respectively.The tangents of c_{1} at A_{2}, B_{2}, C_{2} intersect each other at A_{3}, B_{3}, C_{3} (the points A_{3}, A lie on the same side of $B C$, the points B_{3}, B on the same side of $C A$, and C_{3}, C on the same side of $A B$). The incircle $c_{2}(I, r)$ of $\triangle A B C$ is tangent to $B C, C A, A B$ at A_{1}, B_{1}, C_{1} respectively.Prove that $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}, A A_{3}, B B_{3}, C C_{3}$ are concurrent.

4 Given is the equation $x^{2}+y^{2}-a x y+2=0$ where a is a positive integral parameter.
i.Show that,for $a \neq 4$ there exist no pairs (x, y) of positive integers satisfying the equation.
ii. Show that,for $a=4$ there exist infinite pairs (x, y) of positive integers satisfying the equation, and determine those pairs.

