

AoPS Community

Turkey EGMO TST 2016

www.artofproblemsolving.com/community/c275863 by gavrilos, crazyfehmy

Day 1	February 11th	
-------	---------------	--

1	Prove that $x^4y + y^4z + z^4x + xyz(x^3 + y^3 + z^3) \ge (x + y + z)(3xyz - 1)$	
	for all positive real numbers x, y, z .	
2	In a simple graph, there are two disjoint set of vertices A and B where A has k and B has 2016 vertices. Four numbers are written to each vertex using the colors red, green, blue and black. There is no any edge at the beginning. For each vertex in A , we first choose a color and there draw all edges from this vertex to the vertices in B having a larger number with the chosen color. It is known that for each vertex in B , the set of vertices in A connected to this vertex are different. Find the minimal possible value of k .	
3	Let X be a variable point on the side BC of a triangle ABC . Let B' and C' be points on the rays [XB and [XC, respectively, satisfying $B'X = BC = C'X$. The line passing through X and parallel to AB' cuts the line AC at Y and the line passing through X and parallel to AC' cuts the line AB at Z. Prove that all lines YZ pass through a fixed point as X varies on the line segment BC .	
Day 2	February 12th	
4	In a convex pentagon, let the perpendicular line from a vertex to the opposite side be called an altitude. Prove that if four of the altitudes are concurrent at a point then the fifth altitude also passes through this point.	
5	A sequence a_1, a_2, \ldots consisting of 1's and 0's satisfies for all $k > 2016$ that	
	$a_k = 0 \iff a_{k-1} + a_{k-2} + \dots + a_{k-2016} > 23.$	
	Prove that there exist positive integers N and T such that $a_k = a_{k+T}$ for all $k > N$.	
6	Prove that for every square-free integer $n > 1$, there exists a prime number p and an integer m satisfying	
	$p \mid n \text{and} n \mid p^2 + p \cdot m^p.$	

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.