AoPS Community

2018 Stanford Mathematics Tournament

Stanford Mathematics Tournament 2018

www.artofproblemsolving.com/community/c2772206
by parmenides51

Team Round

- \quad Short Answer Questions
- p1. Suppose A and B are points in the plane lying on the parabola $y=x^{2}$, and the x-coordinates of A and B are - 29 and 51, respectively. Let C be the point where line $A B$ intersects the y -axis. What is the y-coordinate of C ?
p2. Cindy has a collection of identical rectangular prisms. She stacks them, end to end, to form 1 longer rectangular prism. Suppose that joining 11 of them will form a rectangular prism with 3 times the surface area of an individual rectangular prism. How many will she need to join end to end to form a rectangular prism with 9 times the surface area?
p3. A lattice point is a point (a, b) on the Cartesian plane where a and b are integers. Compute the number of lattice points in the interior and on the boundary of the triangle with vertices at $(0,0),(0,20)$, and (18,0).
p4. Let $1=a_{1}<a_{2}<a_{3}<\ldots<a_{k}=n$ be the positive divisors of n in increasing order. If $n=a_{3}^{3}-a_{2}^{3}$, what is n ?
p5. A point $\left(x_{0}, y_{0}\right)$ with integer coordinates is a primitive point of a circle if for some pair of integers (a, b), the line $a x+b y=1$ intersects the circle at (x_{0}, y_{0}). How many primitive points are there of the circle centered at $(2,-3)$ with radius 5 ?
p6. Three distinct points are chosen uniformly at random from the vertices of a regular 2018-gon. What is the probability that the triangle formed by these points is a right triangle?
p7. Consider any 5 points placed on the surface of a cube of side length 2 centered at the origin. Let m_{x} be the minimum distance between the x coordinates of any of the 5 points, m_{y} be the minimum distance between y coordinates, and m_{z} be the minimum distance between z coordinates. What is the maximum value of $m_{x}+m_{y}+m_{z}$?
p8. Eddy has two blank cubes A and B and a marker. Eddy is allowed to draw a total of 36 dots on
cubes A and B to turn them into dice, where each side has an equal probability of appearing, and each side has at least one dot on it. Eddy then rolls dice A twice and dice B once and computes the product of the three numbers. Given that Eddy draws dots on the two dice to maximize his expected product, what is his expected product?
p9. Let $A B C D$ be a square. Point E is chosen inside the square such that $A E=6$. Point F is chosen outside the square such that $B E=B F=2 \sqrt{5}, \angle A B F=\angle C B E$, and $A E B F$ is cyclic. Compute the area of $A B C D$.
p10. Find the total number of sets of nonnegative integers (w, x, y, z) where $w \leq x \leq y \leq z$ such that $5 w+3 x+y+z=100$.
p11. Let $f(k)$ be a function defined by the following rules:
(a) $f(k)$ is multiplicative. In other words, if $\operatorname{gcd}(a, b)=1$, then $f(a b)=f(a) \cdot f(b)$,
(b) $f\left(p^{k}\right)=k$ for primes $p=2,3$ and all $k>0$,
(c) $f\left(p^{k}\right)=0$ for primes $p>3$ and all $k>0$, and
(d) $f(1)=1$.

For example, $f(12)=2$ and $f(160)=0$. Evaluate $\sum_{k=1}^{\infty} \frac{f(k)}{k}$.
p12. Consider all increasing arithmetic progressions of the form $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ such that $a, b, c \in N$ and $\operatorname{gcd}(a, b, c)=1$. Find the sum of all possible values of $\frac{1}{a}$.
p13. In $\triangle A B C$, let D, E, and F be the feet of the altitudes drawn from A, B, and C respectively. Let P and Q be points on line $E F$ such that $B P$ is perpendicular to $E F$ and $C Q$ is perpendicular to $E F$. If $P Q=2018$ and $D E=D F+4$, find $D E$.
p14. Let A and B be two points chosen independently and uniformly at random inside the unit circle centered at O. Compute the expected area of $\triangle A B O$.
p15. Suppose that a, b, c, d are positive integers satisfying

$$
\begin{gathered}
25 a b+25 a c+b^{2}=14 b c \\
4 b c+4 b d+9 c^{2}=31 c d \\
9 c d+9 c a+25 d^{2}=95 d a \\
5 d a+5 d b+20 a^{2}=16 a b
\end{gathered}
$$

Compute $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}$.

PS. You should use hide for answers. Collected here (https://artofproblemsolving.com/ community/c5h2760506p24143309).

- Proof Questions

1 Prove that if 7 divides $a^{2}+b^{2}+1$, then 7 does not divide $a+b$.
2 Consider a game played on the integers in the closed interval [$1, n]$. The game begins with some tokens placed in $[1, n]$. At each turn, tokens are added or removed from $[1, n]$ using the following rule: For each integer $k \in[1, n]$, if exactly one of $k-1$ and $k+1$ has a token, place a token at k for the next turn, otherwise leave k blank for the next turn.
We call a position static if no changes to the interval occur after one turn. For instance, the trivial position with no tokens is static because no tokens are added or removed after a turn (because there are no tokens). Find all non-trivial static positions.

3 Show that if A is a shape in the Cartesian coordinate plane with area greater than 1 , then there are distinct points $(a, b),(c, d)$ in A where $a-c=2 x+5 y$ and $b-d=x+3 y$ where x, y are integers.

4 Let F_{k} denote the series of Fibonacci numbers shifted back by one index, so that $F_{0}=1, F_{1}=1$, and $F_{k+1}=F_{k}+F_{k-1}$. It is known that for any fixed $n \geq 1$ there exist real constants b_{n}, c_{n} such that the following recurrence holds for all $k \geq 1$:

$$
F_{n \cdot(k+1)}=b_{n} \cdot F_{n \cdot k}+c_{n} \cdot F_{n \cdot(k-1)} .
$$

Prove that $\left|c_{n}\right|=1$ for all $n \geq 1$.
5 Let $A B C D$ be a quadrilateral with sides $A B, B C, C D, D A$ and diagonals $A C, B D$. Suppose that all sides of the quadrilateral have length greater than 1 , and that the difference between any side and diagonal is less than 1 . Prove that the following inequality holds

$$
(A B+B C+C D+D A+A C+B D)^{2}>2\left|A C^{3}-B C^{3}\right|+2\left|B D^{3}-A D^{3}\right|-(A B+C D)^{3}
$$

- Geometry Round

1 Consider a semi-circle with diameter $A B$. Let points C and D be on diameter $A B$ such that $C D$ forms the base of a square inscribed in the semicircle. Given that $C D=2$, compute the length of $A B$.

2 Let $A B C D$ be a trapezoid with $A B$ parallel to $C D$ and perpendicular to $B C$. Let M be a point on $B C$ such that $\angle A M B=\angle D M C$. If $A B=3, B C=24$, and $C D=4$, what is the value of $A M+M D$?

AoPS Community

2018 Stanford Mathematics Tournament

3 Let $A B C$ be a triangle and D be a point such that A and D are on opposite sides of $B C$. Give that $\angle A C D=75^{\circ}, A C=2, B D=\sqrt{6}$, and $A D$ is an angle bisector of both $\triangle A B C$ and $\triangle B C D$, find the area of quadrilateral $A B D C$.

4 Let $a_{1}, a_{2}, \ldots, a_{12}$ be the vertices of a regular dodecagon D_{1} (12-gon). The four vertices a_{1}, a_{4}, a_{7}, a_{10} form a square, as do the four vertices $a_{2}, a_{5}, a_{8}, a_{11}$ and $a_{3}, a_{6}, a_{9}, a_{12}$. Let D_{2} be the polygon formed by the intersection of these three squares. If we let $[A]$ denotes the area of polygon A, compute $\frac{\left[D_{2}\right]}{\left[D_{1}\right]}$.
$5 \quad$ In $\triangle A B C, \angle A B C=75^{\circ}$ and $\angle B A C$ is obtuse. Points D and E are on $A C$ and $B C$, respectively, such that $\frac{A B}{B C}=\frac{D E}{E C}$ and $\angle D E C=\angle E D C$. Compute $\angle D E C$ in degrees.

6 In $\triangle A B C, A B=3, A C=6$, and D is drawn on $B C$ such that $A D$ is the angle bisector of $\angle B A C$. D is reflected across $A B$ to a point E, and suppose that $A C$ and $B E$ are parallel. Compute $C E$.

7 Two equilateral triangles $A B C$ and $D E F$, each with side length 1 , are drawn in 2 parallel planes such that when one plane is projected onto the other, the vertices of the triangles form a regular hexagon $A F B D C E$. Line segments $A E, A F, B F, B D, C D$, and $C E$ are drawn, and suppose that each of these segments also has length 1 . Compute the volume of the resulting solid that is formed.

8 Let $A B C$ be a right triangle with $\angle A C B=90^{\circ}, B C=16$, and $A C=12$. Let the angle bisectors of $\angle B A C$ and $\angle A B C$ intersect $B C$ and $A C$ at D and E respectively. Let $A D$ and $B E$ intersect at I, and let the circle centered at I passing through C intersect $A B$ at P and Q such that $A Q<A P$. Compute the area of quadrilateral $D P Q E$.

9 Let $A B C D$ be a cyclic quadrilateral with $3 A B=2 A D$ and $B C=C D$. The diagonals $A C$ and $B D$ intersect at point X. Let E be a point on $A D$ such that $D E=A B$ and Y be the point of intersection of lines $A C$ and $B E$. If the area of triangle $A B Y$ is 5 , then what is the area of quadrilateral $D E Y X$?

10 Let $A B C$ be a triangle with $A B=13, A C=14$, and $B C=15$, and let Γ be its incircle with incenter I. Let D and E be the points of tangency between Γ and $B C$ and $A C$ respectively, and let ω be the circle inscribed in CDIE. If Q is the intersection point between Γ and ω and P is the intersection point between $C Q$ and ω, compute the length of $P Q$.

- Geometry Tiebreaker

1 Point E is on side $C D$ of rectangle $A B C D$ such that $\frac{C E}{D E}=\frac{2}{5}$. If the area of triangle $B C E$ is 30 , what is the area of rectangle $A B C D$?

2 What is the largest possible height of a right cylinder with radius 3 that can fit in a cube with side length 12 ?

3 A triangle has side lengths of 7,8 , and 9 . Find the radius of the largest possible semicircle inscribed in the triangle.

