AoPS Community

Turkey Junior National Olympiad 2021

www.artofproblemsolving.com/community/c2778484
by electrovector, BarisKoyuncu
$1 \quad$ Find all (m, n) positive integer pairs such that both $\frac{3 n^{2}}{m}$ and $\sqrt{n^{2}+m}$ are integers.
2 We are numbering the rows and columns of a 29×29 chess table with numbers $1,2, \ldots, 29$ in order (Top row is numbered with 1 and first columns is numbered with 1 as well). We choose some of the squares in this chess table and for every selected square, we know that there exist at most one square having a row number greater than or equal to this selected square's row number and a column number greater than or equal to this selected square's column number. How many squares can we choose at most?

3 Let x, y, z be real numbers such that

$$
x+y+z=2, \quad x y+y z+z x=1
$$

Find the maximum possible value of $x-y$.
$4 \quad$ Let X be a point on the segment $[B C]$ of an equilateral triangle $A B C$ and let Y and Z be points on the rays [$B A$ and $[C A$ such that the lines $A X, B Z, C Y$ are parallel. If the intersection of $X Y$ and $A C$ is M and the intersection of $X Z$ and $A B$ is N, prove that $M N$ is tangent to the incenter of $A B C$.

