

AoPS Community

Mediterranean Mathematics Olympiad 2016

www.artofproblemsolving.com/community/c279127 by cjquines0

1 Let *ABC* be a triangle. Let *D* be the intersection point of the angle bisector at *A* with *BC*. Let *T* be the intersection point of the tangent line to the circumcircle of triangle *ABC* at point *A* with the line through *B* and *C*.

Let *I* be the intersection point of the orthogonal line to AT through point *D* with the altitude h_a of the triangle at point *A*.

Let P be the midpoint of AB, and let O be the circumcenter of triangle ABC.

Let M be the intersection point of AB and TI, and let F be the intersection point of PT and AD.

Prove: MF and AO are orthogonal to each other.

2 Let a, b, c be positive real numbers with a + b + c = 3. Prove that

$$\sqrt{\frac{b}{a^2+3}} + \sqrt{\frac{c}{b^2+3}} + \sqrt{\frac{a}{c^2+3}} \le \frac{3}{2} \sqrt[4]{\frac{1}{abc}}$$

3 Consider a 25×25 chessboard with cells C(i, j) for $1 \le i, j \le 25$. Find the smallest possible number n of colors with which these cells can be colored subject to the following condition: For $1 \le i < j \le 25$ and for $1 \le s < t \le 25$, the three cells C(i, s), C(j, s), C(j, t) carry at least two different colors.

(Proposed by Gerhard Woeginger, Austria)

4 Determine all integers $n \ge 1$ for which the number $n^8 + n^6 + n^4 + 4$ is prime.

(Proposed by Gerhard Woeginger, Austria)

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.