AoPS Community

Mediterranean Mathematics Olympiad 2016

www.artofproblemsolving.com/community/c279127
by cjquines0

1 Let $A B C$ be a triangle. Let D be the intersection point of the angle bisector at A with $B C$.
Let T be the intersection point of the tangent line to the circumcircle of triangle $A B C$ at point A with the line through B and C.
Let I be the intersection point of the orthogonal line to $A T$ through point D with the altitude h_{a} of the triangle at point A.
Let P be the midpoint of $A B$, and let O be the circumcenter of triangle $A B C$.
Let M be the intersection point of $A B$ and $T I$, and let F be the intersection point of $P T$ and $A D$.
Prove: $M F$ and $A O$ are orthogonal to each other.
2 Let a, b, c be positive real numbers with $a+b+c=3$. Prove that

$$
\sqrt{\frac{b}{a^{2}+3}}+\sqrt{\frac{c}{b^{2}+3}}+\sqrt{\frac{a}{c^{2}+3}} \leq \frac{3}{2} \sqrt[4]{\frac{1}{a b c}}
$$

3 Consider a 25×25 chessboard with cells $C(i, j)$ for $1 \leq i, j \leq 25$. Find the smallest possible number n of colors with which these cells can be colored subject to the following condition: For $1 \leq i<j \leq 25$ and for $1 \leq s<t \leq 25$, the three cells $C(i, s), C(j, s), C(j, t)$ carry at least two different colors.
(Proposed by Gerhard Woeginger, Austria)
4 Determine all integers $n \geq 1$ for which the number $n^{8}+n^{6}+n^{4}+4$ is prime.
(Proposed by Gerhard Woeginger, Austria)

