

AoPS Community

All JMBO Geometry Problems

www.artofproblemsolving.com/community/c279856

by Iris Aliaj, pilot, Valentin Vornicu, pbornsztein, shobber, pohoatza, Ahiles, delegat, Eukleidis, emregirgin35, Igor, Itama, neverlose, sqing, iDra36, Lukaluce

1997	Let ABC be a triangle and let I be the incenter. Let N , M be the midpoints of the sides AB and CA respectively. The lines BI and CI meet MN at K and L respectively. Prove that $AI + BI + CI > BC + KL$.
	Greece
1998	Let $ABCDE$ be a convex pentagon such that $AB = AE = CD = 1$, $\angle ABC = \angle DEA = 90^{\circ}$ and $BC + DE = 1$. Compute the area of the pentagon.
	Greece
1999	Let ABC be a triangle with $AB = AC$. Also, let $D \in [BC]$ be a point such that $BC > BD > DC > 0$, and let C_1, C_2 be the circumcircles of the triangles ABD and ADC respectively. Let BB' and CC' be diameters in the two circles, and let M be the midpoint of $B'C'$. Prove that the area of the triangle MBC is constant (i.e. it does not depend on the choice of the point D).
	Greece
2000	A half-circle of diameter EF is placed on the side BC of a triangle ABC and it is tangent to the sides AB and AC in the points Q and P respectively. Prove that the intersection point K between the lines EP and FQ lies on the altitude from A of the triangle ABC .
	Albania
2001	Let <i>ABC</i> be a triangle with $\angle C = 90^{\circ}$ and $CA \neq CB$. Let <i>CH</i> be an altitude and <i>CL</i> be an interior angle bisector. Show that for $X \neq C$ on the line <i>CL</i> , we have $\angle XAC \neq \angle XBC$. Also show that for $Y \neq C$ on the line <i>CH</i> we have $\angle YAC \neq \angle YBC$.
	Bulgaria
2001	Let ABC be an equilateral triangle and D , E points on the sides $[AB]$ and $[AC]$ respectively. If DF , EF (with $F \in AE$, $G \in AD$) are the interior angle bisectors of the angles of the triangle ADE , prove that the sum of the areas of the triangles DEF and DEG is at most equal with the area of the triangle ABC . When does the equality hold?
	Greece

AoPS Community

JBMO Geometry Collection

- **2002** The triangle *ABC* has CA = CB. *P* is a point on the circumcircle between *A* and *B* (and on the opposite side of the line *AB* to *C*). *D* is the foot of the perpendicular from *C* to *PB*. Show that $PA + PB = 2 \cdot PD$.
- **2002** Two circles with centers O_1 and O_2 meet at two points A and B such that the centers of the circles are on opposite sides of the line AB. The lines BO_1 and BO_2 meet their respective circles again at B_1 and B_2 . Let M be the midpoint of B_1B_2 . Let M_1 , M_2 be points on the circles of centers O_1 and O_2 respectively, such that $\angle AO_1M_1 = \angle AO_2M_2$, and B_1 lies on the minor arc AM_1 while B lies on the minor arc AM_2 . Show that $\angle MM_1B = \angle MM_2B$.

Ciprus

2003 Let D, E, F be the midpoints of the arcs BC, CA, AB on the circumcircle of a triangle ABC not containing the points A, B, C, respectively. Let the line DE meets BC and CA at G and H, and let M be the midpoint of the segment GH. Let the line FD meet BC and AB at K and J, and let N be the midpoint of the segment KJ.

a) Find the angles of triangle DMN;

b) Prove that if P is the point of intersection of the lines AD and EF, then the circumcenter of triangle DMN lies on the circumcircle of triangle PMN.

- **2004** Let ABC be an isosceles triangle with AC = BC, let M be the midpoint of its side AC, and let Z be the line through C perpendicular to AB. The circle through the points B, C, and M intersects the line Z at the points C and Q. Find the radius of the circumcircle of the triangle ABC in terms of m = CQ.
- **2005** Let ABC be an acute-angled triangle inscribed in a circle k. It is given that the tangent from A to the circle meets the line BC at point P. Let M be the midpoint of the line segment AP and R be the second intersection point of the circle k with the line BM. The line PR meets again the circle k at point S different from R.

Prove that the lines AP and CS are parallel.

- **2006** The triangle *ABC* is isosceles with AB = AC, and $\angle BAC < 60^{\circ}$. The points *D* and *E* are chosen on the side *AC* such that, EB = ED, and $\angle ABD \equiv \angle CBE$. Denote by *O* the intersection point between the internal bisectors of the angles $\angle BDC$ and $\angle ACB$. Compute $\angle COD$.
- **2007** Let ABCD be a convex quadrilateral with $\angle DAC = \angle BDC = 36^{\circ}$, $\angle CBD = 18^{\circ}$ and $\angle BAC = 72^{\circ}$. The diagonals and intersect at point P. Determine the measure of $\angle APD$.
- **2008** The vertices A and B of an equilateral triangle ABC lie on a circle k of radius 1, and the vertex C is in the interior of the circle k. A point D, different from B, lies on k so that AD = AB. The

line DC intersects k for the second time at point E. Find the length of the line segment CE.

- **2009** Let ABCDE be a convex pentagon such that AB + CD = BC + DE and k a circle with center on side AE that touches the sides AB, BC, CD and DE at points P, Q, R and S (different from vertices of the pentagon) respectively. Prove that lines PS and AE are parallel.
- **2010** Let AL and BK be angle bisectors in the non-isosceles triangle ABC (L lies on the side BC, K lies on the side AC). The perpendicular bisector of BK intersects the line AL at point M. Point N lies on the line BK such that LN is parallel to MK. Prove that LN = NA.
- **2011** Let *ABCD* be a convex quadrilateral and points *E* and *F* on sides *AB*, *CD* such that

$$\frac{AB}{AE} = \frac{CD}{DF} = n$$

If S is the area of AEFD show that $S \leq \frac{AB \cdot CD + n(n-1)AD^2 + n^2DA \cdot BC}{2n^2}$

- **2012** Let the circles k_1 and k_2 intersect at two points A and B, and let t be a common tangent of k_1 and k_2 that touches k_1 and k_2 at M and N respectively. If $t \perp AM$ and MN = 2AM, evaluate the angle NMB.
- **2013** Let *ABC* be an acute-angled triangle with AB < AC and let *O* be the centre of its circumcircle ω . Let *D* be a point on the line segment *BC* such that $\angle BAD = \angle CAO$. Let *E* be the second point of intersection of ω and the line *AD*. If *M*, *N* and *P* are the midpoints of the line segments *BE*, *OD* and *AC*, respectively, show that the points *M*, *N* and *P* are collinear.
- **2014** Consider an acute triangle ABC of area S. Let $CD \perp AB$ ($D \in AB$), $DM \perp AC$ ($M \in AC$) and $DN \perp BC$ ($N \in BC$). Denote by H_1 and H_2 the orthocentres of the triangles MNC, respectively MND. Find the area of the quadrilateral AH_1BH_2 in terms of S.
- **2015** Let *ABC* be an acute triangle. The lines l_1 and l_2 are perpendicular to *AB* at the points *A* and *B*, respectively. The perpendicular lines from the midpoint *M* of *AB* to the lines *AC* and *BC* intersect l_1 and l_2 at the points *E* and *F*, respectively. If *D* is the intersection point of the lines *EF* and *MC*, prove that

$$\angle ADB = \angle EMF.$$

- **2016** A trapezoid ABCD (AB||CF,AB > CD) is circumscribed. The incircle of the triangle ABC touches the lines AB and AC at the points M and N, respectively. Prove that the incenter of the trapezoid ABCD lies on the line MN.
- **2017** Let *ABC* be an acute triangle such that $AB \neq AC$, with circumcircle Γ and circumcenter *O*. Let *M* be the midpoint of *BC* and *D* be a point on Γ such that $AD \perp BC$. let *T* be a point

AoPS Community

JBMO Geometry Collection

such that BDCT is a parallelogram and Q a point on the same side of BC as A such that $\angle BQM = \angle BCA$ and $\angle CQM = \angle CBA$. Let the line AO intersect Γ at E ($E \neq A$) and let the circumcircle of $\triangle ETQ$ intersect Γ at point $X \neq E$. Prove that the point A, M and X are collinear.

- **2018** Let $\triangle ABC$ and A',B',C' the symmetrics of vertex over opposite sides. The intersection of the circumcircles of $\triangle ABB'$ and $\triangle ACC'$ is $A_1.B_1$ and C_1 are defined similarly. Prove that lines AA_1,BB_1 and CC_1 are concurrent.
- **2019** Triangle ABC is such that AB < AC. The perpendicular bisector of side BC intersects lines AB and AC at points P and Q, respectively. Let H be the orthocentre of triangle ABC, and let M and N be the midpoints of segments BC and PQ, respectively. Prove that lines HM and AN meet on the circumcircle of ABC.
- **2020** Let $\triangle ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$ and let *E* be the foot of the perpendicular from *A* to *BC*. Let $Z \neq A$ be a point on the line *AB* with AB = BZ. Let (*c*) be the circumcircle of the triangle $\triangle AEZ$. Let *D* be the second point of intersection of (*c*) with *ZC* and let *F* be the antidiametric point of *D* with respect to (*c*). Let *P* be the point of intersection of the lines *FE* and *CZ*. If the tangent to (*c*) at *Z* meets *PA* at *T*, prove that the points *T*, *E*, *B*, *Z* are concyclic.

Proposed by Theoklitos Parayiou, Cyprus

2021 Let ABC be an acute scalene triangle with circumcenter O. Let D be the foot of the altitude from A to the side BC. The lines BC and AO intersect at E. Let s be the line through E perpendicular to AO. The line s intersects AB and AC at K and L, respectively. Denote by ω the circumcircle of triangle AKL. Line AD intersects ω again at X. Prove that ω and the circumcircles of triangles ABC and DEX have a common point.

AoPS Online AoPS Academy AoPS Content

Art of Problem Solving is an ACS WASC Accredited School.