

AoPS Community

2009 CIIM

I Iberoamerican Interuniversitary Mathematics Competition - Colombia www.artofproblemsolving.com/community/c281769 by Ozc

Problem 1 Prove that for any positive integer <i>n</i> the number	$\left(\frac{3+\sqrt{17}}{2}\right)$	$)^{n}$ + 1	$\left(\frac{3-\sqrt{17}}{2}\right)$	\int^{n} is an odd integer.
--	--------------------------------------	-------------	--------------------------------------	-------------------------------

Problem 2 Determine if for all natural n there is a $n \times n$ matrix of real entries such that its determinant is 0 and that changing any entry produce another matrix with nonzero determinant.

Problem 3 Let r > n be positive integers. A "good word" is an *n*-tuple $\langle a_1, \ldots, a_n \rangle$ of distinct positive integers between 1 and *r*. A "play" consist of changing a integer a_i of a good word, in such a way that the resulting word is still a good word. The distance between two good words $A = \langle a_1, \ldots, a_n \rangle$ and $B = \langle b_1, \ldots, b_n \rangle$ is the minimun number of plays needed to obtain B from A. Find the maximun posible distance between two good words.

Problem 4 Let m be a line in the plane and M a point not in m. Find the locus of the focus of the parabolas with vertex M that are tangent to m.

Problem 5 Let $f : \mathbb{R} \to \mathbb{R}$, such that

i) For all $a \in \mathbb{R}$ and all $\epsilon > 0$, exists $\delta > 0$ such that $|x - a| < \delta \Rightarrow f(x) < f(a) + \epsilon$.

ii) For all $b \in \mathbb{R}$ and all $\epsilon > 0$, exists $x, y \in \mathbb{R}$ with $b - \epsilon < x < b < y < b + \epsilon$, such that $|f(x) - f(b)| < \epsilon$ and $|f(y) - f(b)| < \epsilon$.

Prove that if f(a) < d < f(d) there exists c with a < c < b or b < c < a such that f(c) = d.

Problem 6 Let ϵ be an *n*-th root of the unity and suppose $z = p(\epsilon)$ is a real number where *p* is some polynomial with integer coefficients. Prove there exists a polynomial *q* with integer coefficients such that $z = q(2\cos(2\pi/n))$.

Art of Problem Solving is an ACS WASC Accredited School.