AoPS Community

I Iberoamerican Interuniversitary Mathematics Competition - Colombia

www.artofproblemsolving.com/community/c281769
by Ozc

Problem 1 Prove that for any positive integer n the number $\left(\frac{3+\sqrt{17}}{2}\right)^{n}+\left(\frac{3-\sqrt{17}}{2}\right)^{n}$ is an odd integer.
Problem 2 Determine if for all natural n there is a $n \times n$ matrix of real entries such that its determinant is 0 and that changing any entry produce another matrix with nonzero determinant.

Problem 3 Let $r>n$ be positive integers. A "good word" is an n-tuple $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ of distinct positive integers between 1 and r. A "play" consist of changing a integer a_{i} of a good word, in such a way that the resulting word is still a good word. The distance between two good words $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $B=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ is the minimun number of plays needed to obtain B from A. Find the maximun posible distance between two good words.

Problem 4 Let m be a line in the plane and M a point not in m. Find the locus of the focus of the parabolas with vertex M that are tangent to m.

Problem 5 Let $f: \mathbb{R} \rightarrow \mathbb{R}$, such that
i) For all $a \in \mathbb{R}$ and all $\epsilon>0$, exists $\delta>0$ such that $|x-a|<\delta \Rightarrow f(x)<f(a)+\epsilon$.
ii) For all $b \in \mathbb{R}$ and all $\epsilon>0$, exists $x, y \in \mathbb{R}$ with $b-\epsilon<x<b<y<b+\epsilon$, such that $|f(x)-f(b)|<\epsilon$ and $|f(y)-f(b)|<\epsilon$.
Prove that if $f(a)<d<f(d)$ there exists c with $a<c<b$ or $b<c<a$ such that $f(c)=d$.
Problem 6 Let ϵ be an n-th root of the unity and suppose $z=p(\epsilon)$ is a real number where p is some polinomial with integer coefficients. Prove there exists a polinomial q with integer coefficients such that $z=q(2 \cos (2 \pi / n))$.

