

AoPS Community

2010 CIIM

II Iberoamerican Interuniversitary Mathematics Competition - Brazil

www.artofproblemsolving.com/community/c281830 by Ozc

- **Problem 1** Given two vectors $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$ in \mathbb{R}^n , lets define v * w as the matrix in which the element of row *i* and column *j* is $v_i w_j$. Supose that *v* and *w* are linearly independent. Find the rank of the matrix v * w w * v.
- **Problem 2** In one side of a hall there are 2N rooms numbered from 1 to 2N. In each room i between 1 and N there are p_i beds. Is needed to move every one of this beds to the roms from N + 1 to 2N, in such a way that for every j between N + 1 and 2N the room j will have p_j beds. Supose that each bed can be move once and the price of moving a bed from room i to room j is $(i-j)^2$. Find a way to move every bed such that the total cost is minimize.

Note: The numbers p_i are given and satisfy that $p_1 + p_2 + \cdots + p_N = p_{N+1} + p_{N+2} + \cdots + p_{2N}$.

Problem 3 A set $X \subset \mathbb{R}$ has dimension zero if, for any $\epsilon > 0$ there exists a positive integer k and intervals $I_1, I_2, ..., I_k$ such that $X \subset I_1 \cup I_2 \cup \cdots \cup I_k$ with $\sum_{i=1}^k |I_j|^{\epsilon} < \epsilon$.

Prove that there exist sets $X, Y \subset [0, 1]$ both of dimension zero, such that X + Y = [0, 2].

Problem 4 Let $f : [0,1] \rightarrow [0,1]$ a increasing continuous function, differentiable in (0,1) and with derivative smaller than 1 in every point. The sequence of sets A_1, A_2, A_3, \ldots is define as: $A_1 = f([0,1])$, and for $n \ge 2$, $A_n = f(A_{n-1})$. Prove that $\lim_{n \to +\infty} d(A_n) = 0$, where d(A) is the diameter of the set A.

Note: The diameter of a set X is define as $d(X) = \sup_{x,y \in X} |x - y|$.

Problem 5 Let n, d be integers with n, k > 1 such that g.c.d(n, d!) = 1. Prove that n and n + d are primes if and only if

 $d!d((n-1)!+1) + n(d!-1) \equiv 0 \pmod{(n+d)}.$

Problem 6 A group is call locally cyclic if any finitely generated subgroup is cyclic. Prove that a locally cyclic group is isomorphic to one of its proper subgroups if and only if it's isomorphic to a proper subgroup of the rational numbers with the adition.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.