Art of Problem Solving

AoPS Community

III Iberoamerican Interuniversitary Mathematics Competition - Ecuador

www.artofproblemsolving.com/community/c283603
by Ozc

Problem 1 Find all real numbers a for which there exist different real numbers b, c, d different from a such that the four tangents drawn to the curve $y=\sin (x)$ at the points $(a, \sin (a)),(b, \sin (b)),(c, \sin (c))$ and $(d, \sin (d))$ form a rectangle.

Problem 2 Let k be a positive integer, and let a be an integer such that $a-2$ is a multiple of 7 and $a^{6}-1$ is a multiple of 7^{k}.
Prove that $(a+1)^{6}-1$ is also a multiple of 7^{k}.
Problem 3 Let $f(x)$ be a rational function with complex coefficients whose denominator does not have multiple roots. Let $u_{0}, u_{1}, \ldots, u_{n}$ be the complex roots of f and $w_{1}, w_{2}, \ldots, w_{m}$ be the roots of f^{\prime}. Suppose that u_{0} is a simple root of f. Prove that

$$
\sum_{k=1}^{m} \frac{1}{w_{k}-u_{0}}=2 \sum_{k=1}^{n} \frac{1}{u_{k}-u_{0}}
$$

Problem 4 For $n \geq 3$, let $\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)=(1,1,1,0, \ldots, 0)$. Let $C_{n}=\left(c_{i, j}\right)$ the $n \times n$ matrix defined by $c_{i, j}=b_{(j-i)} \bmod n$. Show that $\operatorname{det}\left(C_{n}\right)=3$ if n is not a multiple of 3 and $\operatorname{det}\left(C_{n}\right)=0$ if n is a multiple of 3 .

Problem 5 Let n be a positive integer with d digits, all different from zero. For $k=0, \ldots, d-1$, we define n_{k} as the number obtained by moving the last k digits of n to the beginning. For example, if $n=2184$ then $n_{0}=2184, n_{1}=4218, n_{2}=8421, n_{3}=1842$. For m a positive integer, define $s_{m}(n)$ as the number of values k such that n_{k} is a multiple of m. Finally, define a_{d} as the number of integers n with d digits all nonzero, for which $s_{2}(n)+s_{3}(n)+s_{5}(n)=2 d$.
Find

$$
\lim _{d \rightarrow \infty} \frac{a_{d}}{5^{d}} .
$$

Problem 6 Let Γ be the branch $x>0$ of the hyperbola $x^{2}-y^{2}=1$. Let $P_{0}, P_{1}, \ldots, P_{n}$ different points of Γ with $P_{0}=(1,0)$ and $P_{1}=(13 / 12,5 / 12)$. Let t_{i} be the tangent line to Γ at P_{i}. Suppose that for all $i \geq 0$ the area of the region bounded by t_{i}, t_{i+1} and Γ is a constant independent of i. Find the coordinates of the points P_{i}.

