Art of Problem Solving

AoPS Community

CentroAmerican 2016

www.artofproblemsolving.com/community/c287432
by gavrilos, Jutaro, FabrizioFelen

- Day1

1 Find all positive integers n that have 4 digits, all of them perfect squares, and such that n is divisible by $2,3,5$ and 7 .

2 Let $A B C$ be an acute-angled triangle, Γ its circumcircle and M the midpoint of $B C$. Let N be a point in the arc $B C$ of Γ not containing A such that $\angle N A C=\angle B A M$. Let R be the midpoint of $A M, S$ the midpoint of $A N$ and T the foot of the altitude through A. Prove that R, S and T are collinear.

3 The polynomial $Q(x)=x^{3}-21 x+35$ has three different real roots. Find real numbers a and b such that the polynomial $x^{2}+a x+b$ cyclically permutes the roots of Q, that is, if r, s and t are the roots of Q (in some order) then $P(r)=s, P(s)=t$ and $P(t)=r$.

- Day 2

4 The number " 3 " is written on a board. Ana and Bernardo take turns, starting with Ana, to play the following game. If the number written on the board is n, the player in his/her turn must replace it by an integer m coprime with n and such that $n<m<n^{2}$. The first player that reaches a number greater or equal than 2016 loses. Determine which of the players has a winning strategy and describe it.
$5 \quad$ We say a number is irie if it can be written in the form $1+\frac{1}{k}$ for some positive integer k. Prove that every integer $n \geq 2$ can be written as the product of r distinct irie numbers for every integer $r \geq n-1$.

6 Let $\triangle A B C$ be triangle with incenter I and circumcircle Γ. Let $M=B I \cap \Gamma$ and $N=C I \cap \Gamma$, the line parallel to $M N$ through I cuts $A B, A C$ in P and Q. Prove that the circumradius of $\odot(B N P)$ and $\odot(C M Q)$ are equal.

