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– Team Round

1 A positive integer k is called powerful if there are distinct positive integers p, q, r, s, t such that
p2, q3, r5, s7, t11 all divide k. Find the smallest powerful integer.

2 How many sequences of integers (a1, ..., a7) are there for which −1 ≤ ai ≤ 1 for every i, and

a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7 = 4?

3 Michael writes down all the integers between 1 and N inclusive on a piece of paper and dis-
covers that exactly 40% of them have leftmost digit 1. Given that N > 2017, find the smallest
possible value of N .

4 An equiangular hexagon has side lengths 1, 1, a, 1, 1, a in that order. Given that there exists a
circle that intersects the hexagon at 12 distinct points, we have M < a < N for some real
numbers M and N . Determine the minimum possible value of the ratio N

M .

5 Ashwin the frog is traveling on the xy-plane in a series of 22017 − 1 steps, starting at the origin.
At the nth step, if n is odd, then Ashwin jumps one unit to the right. If n is even, then Ashwin
jumps m units up, where m is the greatest integer such that 2m divides n. If Ashwin begins at
the origin, what is the area of the polygon bounded by Ashwin’s path, the line x = 22016, and the
x-axis?

6 Consider five-dimensional Cartesian space R5 = {(x1, x2, x3, x4, x5)|xi ∈ R}, and consider the
hyperplanes with the following equations: • xi = xj for every 1 ≤ i < j ≤ 5, • x1 + x2 + x3 +
x4 + x5 = −1, • x1 + x2 + x3 + x4 + x5 = 0, • x1 + x2 + x3 + x4 + x5 = 1.
Into how many regions do these hyperplanes divide R5 ?

7 There are 12 students in a classroom; 6 of them are Democrats and 6 of them are Republicans.
Every hour the students are randomly separated into four groups of three for political debates.
If a group contains students from both parties, the minority in the group will change his/her
political alignment to that of the majority at the end of the debate. What is the expected amount
of time needed for all 12 students to have the same political alignment, in hours?

8 Find the number of quadruples (a, b, c, d) of integers with absolute value at most 5 such that

(a2 + b2 + c2 + d2)2 = (a+ b+ c+ d)(a− b+ c− d)((a− c)2 + (b− d)2).
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9 LetA,B,C,D be points chosen on a circle, in that order. LineBD is reflected over linesAB and
DA to obtain lines ℓ1 and ℓ2 respectively. If lines ℓ1, ℓ2, and AC meet at a common point and if
AB = 4, BC = 3, CD = 2, compute the length DA.

10 Yannick has a bicycle lock with a 4-digit passcode whose digits are between 0 and 9 inclusive.
(Leading zeroes are allowed.) The dials on the lock is currently set at 0000. To unlock the lock,
every second he picks a contiguous set of dials, and increases or decreases all of them by one,
until the dials are set to the passcode. For example, after the first second the dials could be set
to 1100, 0010, or 9999, but not 0909 or 0190. (The digits on each dial are cyclic, so increasing 9
gives 0, and decreasing 0 gives 9.) Let the complexity of a passcode be the minimum number of
seconds he needs to unlock the lock. What is the maximum possible complexity of a passcode,
and how many passcodes have this maximum complexity? Express the two answers as an
ordered pair.

– Theme Round

1 Two ordered pairs (a, b) and (c, d), where a, b, c, d are real numbers, form a basis of the coordi-
nate plane if ad ̸= bc. Determine the number of ordered quadruples (a, b, c) of integers between
1 and 3 inclusive for which (a, b) and (c, d) form a basis for the coordinate plane.

2 Horizontal parallel segments AB = 10 and CD = 15 are the bases of trapezoid ABCD. Circle
γ of radius 6 has center within the trapezoid and is tangent to sides AB, BC , and DA. If side
CD cuts out an arc of γ measuring 120◦, find the area of ABCD.

3 Emilia wishes to create a basic solution with 7

4 Mary has a sequencem2,m3,m4, ... , such that for each b ≥ 2,mb is the least positive integer m
for
which none of the base-b logarithms logb(m), logb(m + 1), ..., logb(m + 2017) are integers. Find
the largest number in her sequence.

5 Each of the integers 1, 2, ..., 729 is written in its base-3 representation without leading zeroes.
The numbers are then joined together in that order to formacontinuous string of digits: 12101112202122...
How many times in this string does the substring 012 appear?

6 Rthea, a distant planet, is home to creatures whose DNA consists of two (distinguishable)
strands of bases with a fixed orientation. Each base is one of the letters H, M, N, T, and each
strand consists of a sequence of five bases, thus forming five pairs. Due to the chemical prop-
erties of the bases, each pair must consist of distinct bases. Also, the bases H and M cannot
appear next to each other on the same strand; the same is true for N and T. How many possible
DNA sequences are there on Rthea?
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7 On a blackboard a stranger writes the values of s7(n)2 for n = 0, 1, ..., 720 − 1, where s7(n)
denotes the sum of digits of n in base 7. Compute the average value of all the numbers on the
board.

8 Undecillion years ago in a galaxy far, far away, there were four space stations in the three-
dimensional space, each pair spaced 1 light year away from each other. Admiral Ackbar wanted
to establish a base somewhere in space such that the sum of squares of the distances from
the base to each of the stations does not exceed 15 square light years. (The sizes of the space
stations and the base are negligible.) Determine the volume, in cubic light years, of the set of all
possible locations for the Admiral’s base.

9 New this year at HMNT: the exciting game of RNG baseball! In RNG baseball, a team of infinitely
many people play on a square field, with a base at each vertex; in particular, one of the bases is
called the home base. Every turn, a new player stands at home base and chooses a number n
uniformly at random from {0, 1, 2, 3, 4}. Then, the following occurs:
• If n > 0, then the player and everyone else currently on the field moves (counterclockwise)
around
the square by n bases. However, if in doing so a player returns to or moves past the home base,
he/she leaves the field immediately and the team scores one point.
• If n = 0 (a strikeout), then the game ends immediately; the team does not score any more
points.
What is the expected number of points that a given team will score in this game?

10 Denote ϕ =
√
5+1
2 and consider the set of all finite binary strings without leading zeroes. Each

string S has a ”base-ϕ” value p(S). For example, p(1101) = ϕ3 + ϕ2 + 1. For any positive integer
n, let f(n) be the number of such strings S that satisfy p(S) = ϕ48n−1

ϕ48−1
. The sequence of fractions

f(n+1)
f(n) approaches a real number c as n goes to infinity. Determine the value of c.

– General Round

1 Find the sum of all positive integers whose largest proper divisor is 55. (A proper divisor of n is
a divisor that is strictly less than n.)

2 Determine the sum of all distinct real values of x such that ||| · · · ||x|+x| · · · |+x|+x| = 1where
there are 2017 xs in the equation.

3 Find the number of integers nwith 1 ≤ n ≤ 2017 so that (n−2)(n−0)(n−1)(n−7) is an integer
multiple of 1001.

4 Triangle ABC has AB = 10, BC = 17, and CA = 21. Point P lies on the circle with diameter
AB. What is the greatest possible area of APC?
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5 Given that a, b, c are integers with abc = 60, and that complex number ω ̸= 1 satisfies ω3 = 1,
find the minimum possible value of |a+ bω + cω2|.

6 A positive integer n is magical if ⌊
√
⌈
√
n⌉⌋ = ⌈

√
⌊
√
n⌋⌉. Find the number of magical integers

between 1 and 10, 000 inclusive.

7 Reimu has a wooden cube. In each step, she creates a new polyhedron from the previous one
by cutting off a pyramid from each vertex of the polyhedron along a plane through the trisection
point on each adjacent edge that is closer to the vertex. For example, the polyhedron after the
first step has six octagonal faces and eight equilateral triangular faces. Howmany faces are on
the polyhedron after the fifth step?

8 Marisa has a collection of 28 − 1 = 255 distinct nonempty subsets of {1, 2, 3, 4, 5, 6, 7, 8}. For
each step she takes two subsets chosen uniformly at random from the collection, and replaces
them with either their union or their intersection, chosen randomly with equal probability. (The
collection is allowed to contain repeated sets.) She repeats this process 28−2 = 254 times until
there is only one set left in the collection. What is the expected size of this set?

9 Find the minimum value of
√
58− 42x+

√
149− 140

√
1− x2 where −1 ≤ x ≤ 1.

10 Five equally skilled tennis players named Allen, Bob, Catheryn, David, and Evan play in a round
robin tournament, such that each pair of people play exactly once, and there are no ties. In each
of the ten games, the two players both have a 50
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