AoPS Community

Stanford Mathematics Tournament 2019

www.artofproblemsolving.com/community/c2883077
by parmenides51

- \quad Team Round
- p1. Given $x+y=7$, find the value of \mathbf{x} that minimizes $4 x^{2}+12 x y+9 y^{2}$.
p2. There are real numbers b and c such that the only x-intercept of $8 y=x^{2}+b x+c$ equals its y-intercept. Compute $b+c$.
p3. Consider the set of 5 digit numbers $A B C D E$ (with $A \neq 0$) such that $A+B=C, B+C=D$, and $C+D=E$. What's the size of this set?
p4. Let D be the midpoint of $B C$ in $\triangle A B C$. A line perpendicular to D intersects $A B$ at E. If the area of $\triangle A B C$ is four times that of the area of $\triangle B D E$, what is $\angle A C B$ in degrees?
p5. Define the sequence c_{0}, c_{1}, \ldots with $c_{0}=2$ and $c_{k}=8 c_{k-1}+5$ for $k>0$. Find $\lim _{k \rightarrow \infty} \frac{c_{k}}{8^{k}}$.
p6. Find the maximum possible value of $\left|\sqrt{n^{2}+4 n+5}-\sqrt{n^{2}+2 n+5}\right|$.
p7. Let $f(x)=\sin ^{8}(x)+\cos ^{8}(x)+\frac{3}{8} \sin ^{4}(2 x)$. Let $f^{(n)}(\mathrm{x})$ be the nth derivative of f. What is the largest integer a such that 2^{a} divides $f^{(2020)}\left(15^{o}\right)$?
p8. Let R^{n} be the set of vectors $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where $x_{1}, x_{2}, \ldots, x_{n}$ are all real numbers. Let $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|$ denote $\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$. Let S be the set in R^{9} given by

$$
S=\left\{(x, y, z): x, y, z \in R^{3}, 1=\|x\|=\|y-x\|=\|z-y\|\right\} .
$$

If a point (x, y, z) is uniformly at random from S, what is $E\left[\|z\|^{2}\right]$?
p9. Let $f(x)$ be the unique integer between 0 and $x-1$, inclusive, that is equivalent modulo x to $\left(\sum_{i=0}^{2}\binom{x-1}{i}((x-1-i)!+i!)\right.$. Let S be the set of primes between 3 and 30 , inclusive. Find $\sum_{x \in S}^{f(x)}$.
p10. In the Cartesian plane, consider a box with vertices $(0,0),\left(\frac{22}{7}, 0\right),(0,24),\left(\frac{22}{7}, 4\right)$. We pick an integer a between 1 and 24, inclusive, uniformly at random. We shoot a puck from $(0,0)$ in the
direction of $\left(\frac{22}{7}, a\right)$ and the puck bounces perfectly around the box (angle in equals angle out, no friction) until it hits one of the four vertices of the box. What is the expected number of times it will hit an edge or vertex of the box, including both when it starts at $(0,0)$ and when it ends at some vertex of the box?
p11. Sarah is buying school supplies and she has $\$ 2019$. She can only buy full packs of each of the following items. A pack of pens is $\$ 4$, a pack of pencils is $\$ 3$, and any type of notebook or stapler is $\$ 1$. Sarah buys at least 1 pack of pencils. She will either buy 1 stapler or no stapler. She will buy at most 3 college-ruled notebooks and at most 2 graph paper notebooks. How many ways can she buy school supplies?
p12. Let O be the center of the circumcircle of right triangle $A B C$ with $\angle A C B=90^{\circ}$. Let M be the midpoint of minor arc $A C$ and let N be a point on line $B C$ such that $M N \perp B C$. Let P be the intersection of line $A N$ and the Circle O and let Q be the intersection of line $B P$ and $M N$. If $Q N=2$ and $B N=8$, compute the radius of the Circle O.
p13. Reduce the following expression to a simplified rational

$$
\frac{1}{1-\cos \frac{\pi}{9}}+\frac{1}{1-\cos \frac{5 \pi}{9}}+\frac{1}{1-\cos \frac{7 \pi}{9}}
$$

p14. Compute the following integral $\int_{0}^{\infty} \log \left(1+e^{-t}\right) d t$.
p15. Define $f(n)$ to be the maximum possible least-common-multiple of any sequence of positive integers which sum to n. Find the sum of all possible odd $f(n)$

PS. You should use hide for answers. Collected here (https://artofproblemsolving.com/ community/c5h2760506p24143309).

- Geometry Round

1 Let $A B C D$ be a unit square. A semicircle with diameter $A B$ is drawn so that it lies outside of the square. If E is the midpoint of arc $A B$ of the semicircle, what is the area of triangle $C D E$

2 A cat and mouse live on a house mapped out by the points $(-1,0),(-1,2),(0,3),(1,2),(1,0)$. The cat starts at the top of the house (point $(0,3)$) and the mouse starts at the origin (0,0). Both start running clockwise around the house at the same time. If the cat runs at 12 units a minute and the mouse at 9 units a minute, how many laps around the house will the cat run before it catches the mouse?

AoPS Community

2019 Stanford Mathematics Tournament

3 In triangle $A B C$ with $A B=10$, let D be a point on side BC such that $A D$ bisects $\angle B A C$. If $\frac{C D}{B D}=2$ and the area of $A B C$ is 50 , compute the value of $\angle B A D$ in degrees.
$4 \quad$ Let ω_{1} and ω_{2} be two circles intersecting at points P and Q. The tangent line closer to Q touches ω_{1} and ω_{2} at M and N respectively. If $P Q=3, Q N=2$, and $M N=P N$, what is $Q M^{2}$?

5 The bases of a right hexagonal prism are regular hexagons of side length $s>0$, and the prism has height h. The prism contains some water, and when it is placed on a flat surface with a hexagonal face on the bottom, the water has depth $\frac{s \sqrt{3}}{4}$. The water depth doesn't change when the prism is turned so that a rectangular face is on the bottom. Compute $\frac{h}{s}$.
$6 \quad$ Let the altitude of $\triangle A B C$ from A intersect the circumcircle of $\triangle A B C$ at D. Let E be a point on line $A D$ such that $E \neq A$ and $A D=D E$. If $A B=13, B C=14$, and $A C=15$, what is the area of quadrilateral $B D C E$?

7 Let G be the centroid of triangle $A B C$ with $A B=9, B C=10$, and $A C=17$. Denote D as the midpoint of $B C$. A line through G parallel to $B C$ intersects $A B$ at M and $A C$ at N. If $B G$ intersects $C M$ at E and $C G$ intersects $B N$ at F, compute the area of triangle $D E F$.

8 In the coordinate plane, a point A is chosen on the line $y=\frac{3}{2} x$ in the first quadrant. Two perpendicular lines ℓ_{1} and ℓ_{2} intersect at A where ℓ_{1} has slope $m>1$. Let ℓ_{1} intersect the x-axis at B, and ℓ_{2} intersects the x and y axes at C and D, respectively. Suppose that line $B D$ has slope $-m$ and $B D=2$. Compute the length of $C D$.

9 Let $A B C D$ be a quadrilateral with $\angle A B C=\angle C D A=45^{\circ}, A B=7$, and $B D=25$. If $A C$ is perpendicular to $C D$, compute the length of $B C$.

10 Let $A B C$ be an acute triangle with $B C=48$. Let M be the midpoint of $B C$, and let D and E be the feet of the altitudes drawn from B and C to $A C$ and $A B$ respectively. Let P be the intersection between the line through A parallel to $B C$ and line $D E$. If $A P=10$, compute the length of $P M$,

- Geometry Tiebreaker

1 Let $A B C D$ be a quadrilateral with $\angle D A B=\angle A B C=120^{\circ}$. If $A B=3, B C=2$, and $A D=4$, what is the length of $C D$?

2 Let $A B C D$ be a rectangle with $A B=8$ and $B C=6$. Point E is outside of the rectangle such that $C E=D E$. Point D is reflected over line $A E$ so that its image, D^{\prime}, lies on the interior of the rectangle. Point D^{\prime} is then reflected over diagonal $A C$, and its image lies on side $A B$. What is the length of $D E$?

3 Right triangle $A B C$ with $\angle A B C=90^{\circ}$ is inscribed in a circle ω_{1} with radius 3 . A circle ω_{2} tangent to $A B, B C$, and ω_{1} has radius 2 . Compute the area of $\triangle A B C$.

