

AoPS Community

Greece Team Selection Test 2016

www.artofproblemsolving.com/community/c293486 by gavrilos, ABCDE, va2010

1 Given is the sequence $(a_n)_{n\geq 0}$ which is defined as follows: $a_0 = 3$ and $a_{n+1} - a_n = n(a_n - 1)$, $\forall n \geq 0$.

Determine all positive integers m such that $gcd(m, a_n) = 1$, $\forall n \ge 0$.

2 Given is a triangle $\triangle ABC$, with AB < AC < BC, inscribed in circle c(O, R). Let D, E, Z be the midpoints of BC, CA, AB respectively, and K the foot of the altitude from A. At the exterior of $\triangle ABC$ and with the sides AB, AC as diameters, we construct the semicircles c_1, c_2 respectively. Suppose that $P \equiv DZ \cap c_1$, $S \equiv KZ \cap c_1$ and $R \equiv DE \cap c_2$, $T \equiv KE \cap c_2$. Finally, let M be the intersection of the lines PS, RT.

i. Prove that the lines PR, ST intersect at A.

ii. Prove that the lines $PR \cap MD$ intersect on c.

3 Determine all functions $f : \mathbb{Z} \to \mathbb{Z}$ with the property that

$$f(x - f(y)) = f(f(x)) - f(y) - 1$$

holds for all $x, y \in \mathbb{Z}$.

4 For a finite set A of positive integers, a partition of A into two disjoint nonempty subsets A_1 and A_2 is *good* if the least common multiple of the elements in A_1 is equal to the greatest common divisor of the elements in A_2 . Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.

AoPSOnline **AoPS**Academy **AoPS**