AoPS Community

Greece Team Selection Test 2016

www.artofproblemsolving.com/community/c293486
by gavrilos, ABCDE, va2010

1 Given is the sequence $\left(a_{n}\right)_{n \geq 0}$ which is defined as follows: $a_{0}=3$ and $a_{n+1}-a_{n}=n\left(a_{n}-\right.$ 1), $\forall n \geq 0$.

Determine all positive integers m such that $\operatorname{gcd}\left(m, a_{n}\right)=1, \forall n \geq 0$.
2 Given is a triangle $\triangle A B C$, with $A B<A C<B C$, inscribed in circle $c(O, R)$. Let D, E, Z be the midpoints of $B C, C A, A B$ respectively, and K the foot of the altitude from A. At the exterior of $\triangle A B C$ and with the sides $A B, A C$ as diameters, we construct the semicircles c_{1}, c_{2} respectively.Suppose that $P \equiv D Z \cap c_{1}, S \equiv K Z \cap c_{1}$ and $R \equiv D E \cap c_{2}, T \equiv K E \cap c_{2}$. Finally,let M be the intersection of the lines $P S, R T$.
i. Prove that the lines $P R, S T$ intersect at A.
ii. Prove that the lines $P R \cap M D$ intersect on c.

3 Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with the property that

$$
f(x-f(y))=f(f(x))-f(y)-1
$$

holds for all $x, y \in \mathbb{Z}$.

4 For a finite set A of positive integers, a partition of A into two disjoint nonempty subsets A_{1} and A_{2} is good if the least common multiple of the elements in A_{1} is equal to the greatest common divisor of the elements in A_{2}. Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.

