Art of Problem Solving

AoPS Community

2006 Bosnia and Herzegovina Team Selection Test

Bosnia and Herzegovina Team Selection Test 2006

www.artofproblemsolving.com/community/c295924
by gobathegreat

- Day 1

1 Let Z shape be a shape such that it covers $(i, j),(i, j+1),(i+1, j+1),(i+2, j+1)$ and $(i+2, j+2)$ where (i, j) stands for cell in i-th row and j-th column on an arbitrary table. At least how many Z shapes is necessary to cover one 8×8 table if every cell of a Z shape is either cell of a table or it is outside the table (two Z shapes can overlap and Z shapes can rotate)?

2 It is given a triangle $\triangle A B C$. Determine the locus of center of rectangle inscribed in triangle $A B C$ such that one side of rectangle lies on side $A B$.

3 Prove that for every positive integer n holds inequality $\{n \sqrt{7}\}>\frac{3 \sqrt{7}}{14 n}$, where $\{x\}$ is fractional part of x.

- Day 2

4 Prove that every infinite arithmetic progression $a, a+d, a+2 d, \ldots$ where a and d are positive integers, contains infinte geometric progression $b, b q, b q^{2}, \ldots$ where b and q are also positive integers
$5 \quad$ Triangle $A B C$ is inscribed in circle with center O. Let P be a point on arc $A B$ which does not contain point C. Perpendicular from point P on line $B O$ intersects side $A B$ in point S, and side $B C$ in T. Perpendicular from point P on line $A O$ intersects side $A B$ in point Q, and side $A C$ in R.
(i) Prove that triangle $P Q S$ is isosceles
(ii) Prove that $\frac{P Q}{Q R}=\frac{S T}{P Q}$

6 Let $a_{1}, a_{2}, \ldots, a_{n}$ be constant real numbers and x be variable real number x. Let $f(x)=\cos \left(a_{1}+\right.$ $x)+\frac{\cos \left(a_{2}+x\right)}{2}+\frac{\cos \left(a_{3}+x\right)}{2^{2}}+\ldots+\frac{\cos \left(a_{n}+x\right)}{2^{n-1}}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)=0$, prove that $x_{1}-x_{2}=m \pi$, where m is integer.

