AoPS Community

Rice Math Tournament 2008

www.artofproblemsolving.com/community/c2976671
by parmenides51

- \quad Team Round
- p1. Find the maximum value of $e^{\sin x \cos x \tan x}$.
p2. A fighter pilot finds that the average number of enemy ZIG planes she shoots down is $56 z-$ $4 z^{2}$, where z is the number of missiles she fires. Intending to maximize the number of planes she shoots down, she orders her gunner to "Have a nap ... then fire z missiles!" where z is an integer. What should z be?
p3. A sequence is generated as follows: if the $n^{\text {th }}$ term is even, then the $(n+1)^{\text {th }}$ term is half the $n^{\text {th }}$ term; otherwise it is two more than twice the $n^{\text {th }}$ term. If the first term is 10 , what is the $2008^{\text {th }}$ term?
p4. Find the volume of the solid formed by rotating the area under the graph of $y=\sqrt{x}$ around the x-axis, with $0 \leq x \leq 2$.
p5. Find the volume of a regular octahedron whose vertices are at the centers of the faces of a unit cube.
p6. What is the area of the triangle with vertices $(x, 0,0),(0, y, 0)$, and $(0,0, z)$?
p7. Daphne is in a maze of tunnels shown below. She enters at A, and at each intersection, chooses a direction randomly (including possibly turning around). Once Daphne reaches an exit, she will not return into the tunnels. What is the probability that she will exit at A ? https://cdn.artofproblemsolving.com/attachments/c/0/Of8777e9ac9cbe302f042d040e8864d68cadk png
p8. In triangle $A X E, T$ is the midpoint of $\overline{E X}$, and P is the midpoint of $\overline{E T}$. If triangle $A P E$ is equilateral, find $\cos (m \angle X A E)$.
p9. In rectangle $X K C D, J$ lies on $\overline{K C}$ and Z lies on $\overline{X K}$. If $\overline{X J}$ and $\overline{K D}$ intersect at $Q, \overline{Q Z} \perp$ $\overline{X K}$, and $\frac{K C}{K J}=n$, find $\frac{X D}{Q Z}$.
p10. Bill the magician has cards A, B, and C as shown. For his act, he asks a volunteer to pick any number from 1 through 8 and tell him which cards among A, B, and C contain it. He then uses this information to guess the volunteer's number (for example, if the volunteer told Bill " A and $C^{\prime \prime}$, he would guess " 3 ").
One day, Bill loses card C and cannot remember which numbers were on it. He is in a hurry and randomly chooses four different numbers from 1 to 8 to write on a card. What is the probability Bill will still be able to do his trick?

A: 2357
B: 2467
$C: 2361$
p11. Given that $f(x, y)=x^{7} y^{8}+x^{4} y^{14}+A$ has root $(16,7)$, find another root.
p12. How many nonrectangular trapezoids can be formed from the vertices of a regular octagon?
p13. If $r e^{i \theta}$ is a root of $x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1=0, r>0$, and $0 \leq \theta<360$ with θ in degrees, find all possible values of θ.
p14. For what real values of n is $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\tan (x))^{n} d x$ defined?
p15. A parametric graph is given by

$$
\left\{\begin{array}{l}
y=\sin t \\
x=\cos t+\frac{1}{2} t
\end{array}\right.
$$

How many times does the graph intersect itself between $x=1$ and $x=40$?

PS. You had better use hide for answers.

