

AoPS Community

Rice Math	Tournament 2009	
------------------	------------------------	--

www.artofproblemsolving.com/community/c2976672 by parmenides51, Mrdavid445

-	Team	Round
---	------	-------

1	In the future, each country in the world produces its Olympic athletes via cloning and strict
	programs. Therefore, in the fi nals of the 200 m free, there are two indistinguishable athletes
	from each
	of the four countries. How many ways are there to arrange them into eight lanes?
2	Factor completely the expression $(a - b)^3 + (b - c)^3 + (c - a)^3$
3	If x and y are positive integers, and $x^4 + y^4 = 4721$, find all possible values of $x + y$
4	How many ways are there to write 657 as a sum of powers of two where each power of two is used at
	most twice in the sum? For example, $256 + 256 + 128 + 16 + 1$ is a valid sum.
5	Compute $\int_0^\infty t^5 e^{-t} dt$
6	Rhombus $ABCD$ has side length 1. The size of $\angle A$ (in degrees) is randomly selected from all real numbers between 0 and 90. Find the expected value of the area of $ABCD$.
7	An isosceles trapezoid has legs and shorter base of length 1 . Find the maximum possible value of its area
8	Simplify $\sum_{k=1}^n rac{k^2(k-n)}{n^4}$
9	Find the shortest distance between the point $(6,12)$ and the parabola given by the equation $x=\frac{y^2}{2}$
10	Evaluate $\sum_{n=2009}^{\infty} \frac{\binom{n}{2009}}{2^n}$
11	Let z_1 and z_2 be the zeros of the polynomial $f(x) = x^2 + 6x + 11$. Compute $(1 + z_1^2 z_2)(1 + z_1 z_2^2)$.
12	A number N has 2009 positive factors. What is the maximum number of positive factors that N^2 could have?

AoPS Community

2009 Rice Math Tournament

13	Find the remainder obtained when 17^{289} is divided by 7
14	Let a and b be integer solutions to $17a + 6b = 13$. What is the smallest possible positive value for $a - b$?
15	What is the largest integer n for which $\frac{2008!}{31^n}$ is an integer?

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.