AoPS Community

Rice Math Tournament 2009

www.artofproblemsolving.com/community/c2976672
by parmenides51, Mrdavid445

- Team Round

1 In the future, each country in the world produces its Olympic athletes via cloning and strict training
programs. Therefore, in the fi nals of the 200 m free, there are two indistinguishable athletes from each
of the four countries. How many ways are there to arrange them into eight lanes?
$2 \quad$ Factor completely the expression $(a-b)^{3}+(b-c)^{3}+(c-a)^{3}$
$3 \quad$ If x and y are positive integers, and $x^{4}+y^{4}=4721$, find all possible values of $x+y$
4 How many ways are there to write 657 as a sum of powers of two where each power of two is used at
most twice in the sum? For example, $256+256+128+16+1$ is a valid sum.
$5 \quad$ Compute $\int_{0}^{\infty} t^{5} e^{-t} d t$
6 Rhombus $A B C D$ has side length 1 . The size of $\angle A$ (in degrees) is randomly selected from all real numbers between 0 and 90 . Find the expected value of the area of $A B C D$.

7 An isosceles trapezoid has legs and shorter base of length 1. Find the maximum possible value of its area

8 Simplify $\sum_{k=1}^{n} \frac{k^{2}(k-n)}{n^{4}}$
9 Find the shortest distance between the point $(6,12)$ and the parabola given by the equation $x=\frac{y^{2}}{2}$

10 Evaluate $\sum_{n=2009}^{\infty} \frac{\binom{n}{2^{n}}}{2^{n}}$

11 Let z_{1} and z_{2} be the zeros of the polynomial $f(x)=x^{2}+6 x+11$. Compute $\left(1+z_{1}^{2} z_{2}\right)\left(1+z_{1} z_{2}^{2}\right)$.
12 A number N has 2009 positive factors. What is the maximum number of positive factors that N^{2} could have?

13 Find the remainder obtained when 17^{289} is divided by 7
14 Let a and b be integer solutions to $17 a+6 b=13$. What is the smallest possible positive value for $a-b$?

15 What is the largest integer n for which $\frac{2008!}{31^{n}}$ is an integer?

