## AoPS Community

## Rice Math Tournament 2015

www.artofproblemsolving.com/community/c2976678
by parmenides51

- Team Round
- p1. Two externally tangent unit circles are constructed inside square $A B C D$, one tangent to $A B$ and $A D$, the other to $B C$ and $C D$. Compute the length of $A B$.
p2. We say that a triple of integers $(a, b, c)$ is sorted if $a<b<c$. How many sorted triples of positive integers are there such that $c \leq 15$ and the greatest common divisor of $a, b$, and $c$ is greater than 1 ?
p3. Two players play a game where they alternate taking a positive integer N and decreasing it by some divisor n of $N$ such that $n<N$. For example, if one player is given $N=15$, they can choose $n=3$ and give the other player $N-n=15-3=12$. A player loses if they are given $N=1$.
For how many of the first 2015 positive integers is the player who moves first guaranteed to win, given optimal play from both players?
p4. The polynomial $x^{3}-2015 x^{2}+m x+n$ has integer coefficients and has 3 distinct positive integer roots. One of the roots is the product of the two other roots. How many possible values are there for $n$ ?
p5. You have a robot. Each morning the robot performs one of four actions, each with probability 1/4: • Nothing. • Self-destruct. • Create one clone. • Create two clones.
Compute the probability that you eventually have no robots.
p6. Four spheres of radius 1 are mutually tangent. What is the radius of the smallest sphere containing them?
p7. Find the radius of the largest circle that lies above the $x$-axis and below the parabola $y=$ $2-x^{2}$.
p8. For some nonzero constant $a$, let $f(x)=e^{a x}$ and $g(x)=\frac{1}{a} \log x$. Find all possible values of $a$ such that the graphs of $f$ and $g$ are tangent at exactly one point.


## 2015 Rice Math Tournament

p9. Consider a regular pentagon and connect each vertex to the pair of vertices farthest from it by line segments. The line segments intersect at 5 points to form another smaller pentagon. If the large pentagon has side length 1, compute the area of the smaller pentagon. Express your answer without trigonometric functions.
p10. Let $\mathrm{f}(\mathrm{x})$ be a function that satisfies $f(x) f(2-x)=x^{2} f(x-2)$ and $f(1)=\frac{1}{403}$. Compute $f(2015)$.
p11. You are playing a game on the number line. At the beginning of the game, every real number on $[0,4)$ is uncovered, and the rest are covered. A turn consists of picking a real number $r$ such that, for all $x$ where $r \leq x<r+1, x$ is uncovered. The turn ends by covering all such $x$. At the beginning of a turn, one selects such a real $r$ uniformly at random from among all possible choices for $r_{\mu}$; the game ends when no such $r$ exists. Compute the expected number of turns that will take place during this game.
p12. Consider the recurrence $a_{n+1}=4 a_{n}\left(1-a_{n}\right)$
Call a point $a_{0} \in[0,1] q$-periodic if $a_{q}=a_{0}$. For example, $a_{0}=0$ is always a $q$-periodic fixed point for any $q$. Compute the number of positive 2015-periodic fixed points.
p13. Let $a, b, c \in\{-1,1\}$. Evaluate the following expression, where the sum is taken over all possible choices of $a, b$, and $c$ :

$$
\sum a b c\left(2^{\frac{1}{5}}+a 2^{\frac{2}{5}}+b 2^{\frac{3}{5}}+c 2^{\frac{4}{5}}\right)^{4}
$$

p14. A small circle $A$ of radius $\frac{1}{3}$ rotates, without slipping, inside and tangent to a unit circle $B$. Let $p$ be a fixed point on $A$, and compute the length of the closed curve traced out by $p$ as $A$ rotates inside $B$.
p15. Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be distinct positive integers such that $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=100$. Compute the maximum value of the expression

$$
\frac{\left(x_{2} x_{5}+1\right)\left(x_{3} x_{5}+1\right)\left(x_{4} x_{5}+1\right)}{\left(x_{2}-x_{1}\right)\left(x_{3}-x-1\right)\left(x_{4}-x_{1}\right)}+\frac{\left(x_{1} x_{5}+1\right)\left(x_{3} x_{5}+1\right)\left(x_{4} x_{5}+1\right)}{\left(x_{1}-x 2\right)\left(x_{3}-x_{2}\right)\left(x_{4}-x_{2}\right)}+\frac{\left(x_{1} x_{5}+1\right)\left(x_{2} x_{5}+1\right)\left(x_{4} x_{5}+1\right)}{\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)\left(x_{4}-x_{3}\right)}+\frac{\left(x_{1} x_{5}\right.}{\left(x_{1}-\right.}
$$

PS. You had better use hide for answers.

## - Geometry Round

1 Clyde is making a Pacman sticker to put on his laptop. A Pacman sticker is a circular sticker of radius 3 inches with a sector of $120^{\circ}$ cut out. What is the perimeter of the Pacman sticker in inches?

2 In a certain right triangle, dropping an altitude to the hypotenuse divides the hypotenuse into two segments of length 2 and 3 respectively. What is the area of the triangle?

3 Consider a triangular pyramid $A B C D$ with equilateral base $A B C$ of side length 1. $A D=B D=$ $C D$ and $\angle A D B=\angle B D C=\angle A D C=90^{\circ}$. Find the volume of $A B C D$.

4 Two circles with centers $A$ and $B$ respectively intersect at two points $C$ and $D$. Given that $A, B, C, D$ lie on a circle of radius 3 and circle $A$ has radius 2 , what is the radius of circle $B$ ?

5 Consider two concentric circles of radius 1 and 2. Up to rotation, there are two distinct equilateral triangles with two vertices on the circle of radius 2 and the remaining vertex on the circle of radius 1 . The larger of these triangles has sides of length $a$, and the smaller has sides of length $b$. Compute $a+b$.
$6 \quad$ In a triangle $A B C$, let $D$ and $E$ trisect $B C$, so $B D=D E=E C$. Let $F$ be the point on $A B$ such that $\frac{A F}{F B}=2$, and $G$ on $A C$ such that $\frac{A G}{G C}=\frac{1}{2}$. Let $P$ be the intersection of $D G$ and $E F$, and extend $A P$ to intersect $B C$ at a point $X$. Find $\frac{B X}{X C}$
$7 \quad$ A unit sphere is centered at $(0,0,1)$. There is a point light source located at $(1,0,4)$ that sends out light uniformly in every direction but is blocked by the sphere. What is the area of the sphere's shadow on the $x-y$ plane? (A point $(a, b, c)$ denotes the point in three dimensions with $x$ coordinate $a, y$-coordinate $b$, and $z$-coordinate $c$ )

8 Consider the parallelogram $A B C D$ such that $C D=8$ and $B C=14$. The diagonals $\overline{A C}$ and $\overline{B D}$ intersect at $E$ and $A C=16$. Consider a point $F$ on the segment $\overline{E D}$ with $F D=\frac{\sqrt{66}}{3}$. Compute $C F$.

9 Triangle $A B C$ is isoceles with $A B=A C=2$ and $B C=1$. Point $D$ lies on $A B$ such that the inradius of $A D C$ equals the inradius of $B D C$. What is the inradius of $A D C$ ?

10 For a positive real number $k$ and an even integer $n \geq 4$, the $k$-Perfect $n$-gon is defined to be the equiangular $n$-gon $P_{1} P_{2} \ldots P_{n}$ with $P_{i} P_{i+1}=P_{n / 2+i} P_{n / 2+i+1}=k^{i-1}$ for all $i \in\{1,2, \ldots, n / 2\}$, assuming the convention $P_{n+1}=P_{1}$ (i.e. the numbering wraps around). If $a(k, n)$ denotes the area of the $k$-Perfect $n$-gon, compute $\frac{a(2,24)}{a(4,12)}$.

