## AoPS Community

www.artofproblemsolving.com/community/c2977780
by parmenides51, ZeusDM, mathisreal

- $\quad$ level 3
- $\quad$ Day 1

1 Let $A B C D$ be a convex quadrilateral in the plane and let $O_{A}, O_{B}, O_{C}$ and $O_{D}$ be the circumcenters of the triangles $B C D, C D A, D A B$ and $A B C$, respectively. Suppose these four circumcenters are distinct points. Prove that these points are not on a same circle.

2 Let $n$ be a positive integer. On a $2 \times 3 n$ board, we mark some squares, so that any square (marked or not) is adjacent to at most two other distinct marked squares (two squares are adjacent when they are distinct and have at least one vertex in common, i.e. they are horizontal, vertical or diagonal neighbors; a square is not adjacent to itself).
(a) What is the greatest possible number of marked square?
(b) For this maximum number, in how many ways can we mark the squares? configurations that can be achieved through rotation or reflection are considered distinct.

3 Find all positive integers $k$ for which there is an irrational $\alpha>1$ and a positive integer $N$ such that $\left\lfloor\alpha^{n}\right\rfloor$ is a perfect square minus $k$ for every integer $n$ with $n>N$.

- Day 2

4 A set $A$ of real numbers is framed when it is bounded and, for all $a, b \in A$, not necessarily distinct, $(a-b)^{2} \in A$. What is the smallest real number that belongs to some framed set?

5 Find all triples of non-negative integers ( $a, b, c$ ) such that

$$
a^{2}+b^{2}+c^{2}=a b c+1
$$

6 Let $n \geq 5$ be integer. The convex polygon $P=A_{1} A_{2} \ldots A_{n}$ is bicentric, that is, it has an inscribed and circumscribed circle. Set $A_{i+n}=A_{i}$ to every integer $i$ (that is, all indices are taken modulo $n$ ). Suppose that for all $i, 1 \leq i \leq n$, the rays $A_{i-1} A_{i}$ and $A_{i+2} A_{i+1}$ meet at the point $B_{i}$. Let $\omega_{i}$ be the circumcircle of $B_{i} A_{i} A_{i+1}$. Prove that there is a circle tangent to all $n$ circles $\omega_{i}, 1 \leq i \leq n$.

- junior

1 In a school there are 2021 doors with the numbers $1,2, \ldots, 2021$. In a day 2021 students play the following game: Initially all the doors are closed, and each student receive a card to define the order, there are exactly 2021 cards. The numbers in the cards are $1,2, \ldots, 2020,2021$.
The order will be student 1 first, student 2 will be the second, and going on. The student $k$ will change the state of the doors $k, 2 k, 4 k, 8 k, \ldots, 2^{p} k$ with $2^{p} k \leq 2021 \leq 2^{p+1} k$. Change the state is if the door was close, it will be open and vice versa.
a) After the round of the student 16 , determine the configuration of the doors $1,2, \ldots, 16$
b) After the round of the student 2021, determine how many doors are closed.

266 points are given on a plane; collinearity is allowed. There are exactly 2021 lines passing by at least two of the given points. Determine the greatest number of points in a same line. Give an example.

3 Let $A B C$ be a scalene triangle and $\omega$ is your incircle. The sides $B C, C A$ and $A B$ are tangents to $\omega$ in $X, Y, Z$ respectively. Let $M$ be the midpoint of $B C$ and $D$ is the intersection point of $B C$ with the angle bisector of $\angle B A C$. Prove that $\angle B A X=\angle M A C$ if and only if $Y Z$ passes by the midpoint of $A D$.

4 Let $d(n)$ be the quantity of positive divisors of $n$, for example $d(1)=1, d(2)=2, d(10)=4$. The size of $n$ is $k$ if $k$ is the least positive integer, such that $d^{k}(n)=2$. Note that $d^{s}(n)=d\left(d^{s-1}(n)\right)$.
a) How many numbers in the interval $[3,1000]$ have size 2 ?
b) Determine the greatest size of a number in the interval [3,1000].

5 Let $A B C$ be an acute-angled triangle. Let $A_{1}$ be the midpoint of the arc $B C$ which contain the point $A$. Let $A_{2}$ and $A_{3}$ be the foot(s) of the perpendicular(s) of the point $A_{1}$ to the lines $A B$ and $A C$, respectively. Define $B_{2}, B_{3}, C_{2}, C_{3}$ analogously.
a) Prove that the line $A_{2} A_{3}$ cuts $B C$ in the midpoint.
b) Prove that the lines $A_{2} A_{3}, B_{2} B_{3}$ and $C_{2} C_{3}$ are concurrents.

6 In a football championship with 2021 teams, each team play with another exactly once. The score of the match(es) is three points to the winner, one point to both players if the match end in draw(tie) and zero point to the loser. The final of the tournament will be played by the two highest score teams. Brazil Football Club won the first match, and it has the advantage if in the final score it draws with any other team. Determine the least score such that Brazil Football Club has a chance to play the final match.

7 Let $A B C$ be a triangle with $\angle A B C=90^{\circ}$. The square $B D E F$ is inscribed in $\triangle A B C$, such that $D, E, F$ are in the sides $A B, C A, B C$ respectively. The inradius of $\triangle E F C$ and $\triangle E D A$ are $c$ and $b$, respectively. Four circles $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ are drawn inside the square $B D E F$, such that the radius of $\omega_{1}$ and $\omega_{3}$ are both equal to $b$ and the radius of $\omega_{2}$ and $\omega_{4}$ are both equal to $a$. The circle $\omega_{1}$ is tangent to $E D$, the circle $\omega_{3}$ is tangent to $B F, \omega_{2}$ is tangent to $E F$ and $\omega_{4}$ is tangent to $B D$, each one of these circles are tangent to the two closest circles and the circles $\omega_{1}$ and $\omega_{3}$ are tangents. Determine the ratio $\frac{c}{a}$.

8 A triple of positive integers ( $a, b, c$ ) is brazilian if

$$
\begin{aligned}
& a \mid b c+1 \\
& b \mid a c+1 \\
& c \mid a b+1
\end{aligned}
$$

Determine all the brazilian triples.
$9 \quad$ Let $\alpha \geq 1$ be a real number. Define the set

$$
A(\alpha)=\{\lfloor\alpha\rfloor,\lfloor 2 \alpha\rfloor,\lfloor 3 \alpha\rfloor, \ldots\}
$$

Suppose that all the positive integers that does not belong to the $A(\alpha)$ are exactly the positive integers that have the same remainder $r$ in the division by 2021 with $0 \leq r<2021$. Determine all the possible values of $\alpha$.

