AoPS Community

Second Round - Poland 2022

www.artofproblemsolving.com/community/c2984414
by Tintarn, TheMathBob, Flow25

- Day 1

1 Find all real quadruples (a, b, c, d) satisfying the system of equations

$$
\left\{\begin{array}{l}
a b+c d=6 \\
a c+b d=3 \\
a d+b c=2 \\
a+b+c+d=6
\end{array}\right.
$$

2 Given a cyclic quadriteral $A B C D$. The circumcenter lies in the quadriteral $A B C D$. Diagonals $A C$ and $B D$ intersects at S. Points P and Q are the midpoints of $A D$ and $B C$. Let p be a line perpendicular to $A C$ through P, q perpendicular line to $B D$ through Q and s perpendicular to $C D$ through S. Prove that p, q, s intersects at one point.

3 Positive integers a, b, c satisfying the equation

$$
a^{3}+4 b+c=a b c,
$$

where $a \geq c$ and the number $p=a^{2}+2 a+2$ is a prime. Prove that p divides $a+2 b+2$.

- Day 2

4 Given quadrilateral $A B C D$ inscribed into a circle with diagonal $A C$ as diameter. Let E be a point on segment $B C$ s.t. $\varangle D A C=\varangle E A B$. Point M is midpoint of $C E$. Prove that $B M=D M$.

5 Let n be an positive integer. We call n good when there exists positive integer k s.t. $n=k(k+1)$. Does there exist 2022 pairwise distinct good numbers s.t. their sum is also good number?
$6 \quad n$ players took part in badminton tournament, where n is positive and odd integer. Each two players played two matches with each other. There were no draws. Each player has won as many matches as he has lost. Prove that you can cancel half of the matches s.t. each player still has won as many matches as he has lost.

