

AoPS Community

2022 EGMO TST - Romania

EGMO TST - Romania 2022

www.artofproblemsolving.com/community/c2986892 by oVlad, April

Barbu only writes acute ones.

-	Day 1
P1	A finite set M of real numbers has the following properties: M has at least 4 elements, and there exists a bijective function $f: M \to M$, different from the identity, such that $ab \leq f(a)f(b)$ for all $a \neq b \in M$. Prove that the sum of the elements of M is 0.
P2	At first, on a board, the number 1 is written 100 times. Every minute, we pick a number a from the board, erase it, and write $a/3$ thrice instead. We say that a positive integer n is <i>persistent</i> if after any amount of time, regardless of the numbers we pick, we can find at least n equal numbers on the board. Find the greatest persistent number.
Р3	Let $ABCD$ be a convex quadrilateral and let O be the intersection of its diagonals. Let P, Q, R , and S be the projections of O on AB, BC, CD , and DA respectively. Prove that
	$2(OP + OQ + OR + OS) \le AB + BC + CD + DA.$
P4	For every positive integer $N \geq 2$ with prime factorisation $N = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ we define
	$f(N) := 1 + p_1 a_1 + p_2 a_2 + \dots + p_k a_k.$
	Let $x_0 \ge 2$ be a positive integer. We define the sequence $x_{n+1} = f(x_n)$ for all $n \ge 0$. Prove that this sequence is eventually periodic and determine its fundamental period.
-	Day 2
P1	Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that all real numbers x and y satisfy
	$f(f(x) + y) = f(x^2 - y) + 4f(x)y.$
P2	On a board there is a regular polygon $A_1A_2 \dots A_{99}$. Ana and Barbu alternatively occupy empty vertices of the polygon and write down triangles on a list: Ana only writes obtuse triangles, while

At the first turn, Ana chooses three vertices X, Y and Z and writes down $\triangle XYZ$. Then, Barbu chooses two of X, Y and Z, for example X and Y, and an unchosen vertex T, and writes down $\triangle XYT$. The game goes on and at each turn, the player must choose a new vertex R and write

AoPS Community

2022 EGMO TST - Romania

down $\triangle PQR$, where *P* is the last vertex chosen by the other player, and *Q* is one of the other vertices of the last triangle written down by the other player.

If one player cannot perform a move, then the other one wins. If both people play optimally, determine who has a winning strategy.

- **P3** Let be given a parallelogram ABCD and two points A_1 , C_1 on its sides AB, BC, respectively. Lines AC_1 and CA_1 meet at P. Assume that the circumcircles of triangles AA_1P and CC_1P intersect at the second point Q inside triangle ACD. Prove that $\angle PDA = \angle QBA$.
- P4 Let $p \ge 3$ be an odd positive integer. Show that p is prime if and only if however we choose (p+1)/2 pairwise distinct positive integers, we can find two of them, a and b, such that $(a + b)/\gcd(a, b) \ge p$.

AoPS Online 🔯 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.