

AoPS Community

1953 Czech and Slovak Olympiad III A

Czech And Slovak Mathematical Olympiad, Round III, Category A, 1953 www.artofproblemsolving.com/community/c2988186 by byk7

1 Find the locus of all numbers $z \in \mathbb{C}$ in complex plane satisfying

$$z + \bar{z} = a \cdot |z|,$$

where $a \in \mathbb{R}$ is given.

2 Let α, β, γ be angles of a triangle. Two of them can be expressed using an auxiliary angle φ in a way that

$$\alpha = \varphi + \frac{\pi}{4}, \quad \beta = \pi - 3\varphi.$$

Show that $\alpha > \gamma$.

3 Prove that the inequality

$$(a_1 + \dots + a_n) \left(\frac{1}{a_1} + \dots + \frac{1}{a_n}\right) \ge n^2$$

holds for any positive numbers a_1, \ldots, a_n and determine when equality occurs.

4 Consider skew lines a, b and a plane ρ that intersect both of the lines (but does not contain any of them). Choose such points $X \in a, Y \in b$ that $XY \parallel \rho$. Find the locus of midpoints M of all segments XY, when X moves along line a.

AoPS Online 🔯 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.

1