Czech And Slovak Mathematical Olympiad, Round III, Category A, 1953

www.artofproblemsolving.com/community/c2988186
by byk7

1 Find the locus of all numbers $z \in \mathbb{C}$ in complex plane satisfying

$$
z+\bar{z}=a \cdot|z|,
$$

where $a \in \mathbb{R}$ is given.
2 Let α, β, γ be angles of a triangle. Two of them can be expressed using an auxiliary angle φ in a way that

$$
\alpha=\varphi+\frac{\pi}{4}, \quad \beta=\pi-3 \varphi .
$$

Show that $\alpha>\gamma$.
3 Prove that the inequality

$$
\left(a_{1}+\cdots+a_{n}\right)\left(\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}\right) \geq n^{2}
$$

holds for any positive numbers a_{1}, \ldots, a_{n} and determine when equality occurs.
4 Consider skew lines a, b and a plane ρ that intersect both of the lines (but does not contain any of them). Choose such points $X \in a, Y \in b$ that $X Y \| \rho$. Find the locus of midpoints M of all segments $X Y$, when X moves along line a.

