Art of Problem Solving

AoPS Community

India International Mathematical Olympiad Training Camp 2016

www.artofproblemsolving.com/community/c299003
by gavrilos, IstekOlympiadTeam, Ankoganit, Mukhammadiev, Problem_Penetrator, ABCDE, va2010

- Practice Tests
- \quad Practice Test 1

1 An acute-angled $A B C(A B<A C)$ is inscribed into a circle ω. Let M be the centroid of $A B C$, and let $A H$ be an altitude of this triangle. A ray $M H$ meets ω at A^{\prime}. Prove that the circumcircle of the triangle $A^{\prime} H B$ is tangent to $A B$. (A.I. Golovanov, A. Yakubov)

2 Given that n is a natural number such that the leftmost digits in the decimal representations of 2^{n} and 3^{n} are the same, find all possible values of the leftmost digit.

3 Let a,b,c,d be real numbers satisfying $|a|,|b|,|c|,|d|>1$ and $a b c+a b d+a c d+b c d+a+b+c+d=0$. Prove that $\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}+\frac{1}{d-1}>0$

- \quad Practice Test 2

1 We say a natural number n is perfect if the sum of all the positive divisors of n is equal to $2 n$. For example, 6 is perfect since its positive divisors $1,2,3,6$ add up to $12=2 \times 6$. Show that an odd perfect number has at least 3 distinct prime divisors.

Note: It is still not known whether odd perfect numbers exist. So assume such a number is there and prove the result.

2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}+x f(y)\right)=x f(x+y)
$$

for all reals x, y.
3 An equilateral triangle with side length 3 is divided into 9 congruent triangular cells as shown in the figure below. Initially all the cells contain 0 . A move consists of selecting two adjacent cells (i.e., cells sharing a common boundary) and either increasing or decreasing the numbers in both the cells by 1 simultaneously. Determine all positive integers n such that after performing several such moves one can obtain 9 consecutive numbers $n,(n+1), \cdots,(n+8)$ in some order.

- Team Selection Tests

- \quad Team Selection Test 1

1 Let $A B C$ be an acute triangle with orthocenter H. Let G be the point such that the quadrilateral $A B G H$ is a parallelogram. Let I be the point on the line $G H$ such that $A C$ bisects $H I$. Suppose that the line $A C$ intersects the circumcircle of the triangle $G C I$ at C and J. Prove that $I J=$ AH.

2 Suppose that a sequence a_{1}, a_{2}, \ldots of positive real numbers satisfies

$$
a_{k+1} \geq \frac{k a_{k}}{a_{k}^{2}+(k-1)}
$$

for every positive integer k. Prove that $a_{1}+a_{2}+\ldots+a_{n} \geq n$ for every $n \geq 2$.
3 Let n be a natural number. A sequence $x_{1}, x_{2}, \cdots, x_{n^{2}}$ of n^{2} numbers is called n - good if each x_{i} is an element of the set $\{1,2, \cdots, n\}$ and the ordered pairs (x_{i}, x_{i+1}) are all different for $i=1,2,3, \cdots, n^{2}$ (here we consider the subscripts modulo n^{2}). Two n-good sequences $x_{1}, x_{2}, \cdots, x_{n^{2}}$ and $y_{1}, y_{2}, \cdots, y_{n^{2}}$ are called similar if there exists an integer k such that $y_{i}=$ x_{i+k} for all $i=1,2, \cdots, n^{2}$ (again taking subscripts modulo n^{2}). Suppose that there exists a non-trivial permutation (i.e., a permutation which is different from the identity permutation) σ of $\{1,2, \cdots, n\}$ and an $n-$ good sequence $x_{1}, x_{2}, \cdots, x_{n^{2}}$ which is similar to $\sigma\left(x_{1}\right), \sigma\left(x_{2}\right), \cdots, \sigma\left(x_{n^{2}}\right)$. Show that $n \equiv 2(\bmod 4)$.

- \quad Team Selection Test 2

1 Suppose α, β are two positive rational numbers. Assume for some positive integers m, n, it is known that $\alpha^{\frac{1}{n}}+\beta^{\frac{1}{m}}$ is a rational number. Prove that each of $\alpha^{\frac{1}{n}}$ and $\beta^{\frac{1}{m}}$ is a rational number.

2 Let m and n be positive integers such that $m>n$. Define $x_{k}=\frac{m+k}{n+k}$ for $k=1,2, \ldots, n+1$. Prove that if all the numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ are integers, then $x_{1} x_{2} \ldots x_{n+1}-1$ is divisible by an odd prime.

3 For a finite set A of positive integers, a partition of A into two disjoint nonempty subsets A_{1} and A_{2} is good if the least common multiple of the elements in A_{1} is equal to the greatest

2016 India IMO Training Camp

common divisor of the elements in A_{2}. Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.

- Team Selection Test 3

1 Let n be a natural number. We define sequences $\left\langle a_{i}\right\rangle$ and $\left\langle b_{i}\right\rangle$ of integers as follows. We let $a_{0}=1$ and $b_{0}=n$. For $i>0$, we let

$$
\left(a_{i}, b_{i}\right)= \begin{cases}\left(2 a_{i-1}+1, b_{i-1}-a_{i-1}-1\right) & \text { if } a_{i-1}<b_{i-1} \\ \left(a_{i-1}-b_{i-1}-1,2 b_{i-1}+1\right) & \text { if } a_{i-1}>b_{i-1} \\ \left(a_{i-1}, b_{i-1}\right) & \text { if } a_{i-1}=b_{i-1}\end{cases}
$$

Given that $a_{k}=b_{k}$ for some natural number k, prove that $n+3$ is a power of two.
2 Let $A B C$ be an acute triangle and let M be the midpoint of $A C$. A circle ω passing through B and M meets the sides $A B$ and $B C$ at points P and Q respectively. Let T be the point such that $B P T Q$ is a parallelogram. Suppose that T lies on the circumcircle of $A B C$. Determine all possible values of $\frac{B T}{B M}$.

3 Let n be an odd natural number. We consider an $n \times n$ grid which is made up of n^{2} unit squares and $2 n(n+1)$ edges. We colour each of these edges either red or blue. If there are at most n^{2} red edges, then show that there exists a unit square at least three of whose edges are blue.

- \quad Team Selection Test 4

1 Let $A B C$ be an acute triangle with circumcircle Γ. Let A_{1}, B_{1} and C_{1} be respectively the midpoints of the arcs $B A C, C B A$ and $A C B$ of Γ. Show that the inradius of triangle $A_{1} B_{1} C_{1}$ is not less than the inradius of triangle $A B C$.

2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{3}+f(y)\right)=x^{2} f(x)+y
$$

for all $x, y \in \mathbb{R}$. (Here \mathbb{R} denotes the set of all real numbers.)
$3 \quad$ Let \mathbb{N} denote the set of all natural numbers. Show that there exists two nonempty subsets A and B of \mathbb{N} such that

- $A \cap B=\{1\} ;$
- every number in \mathbb{N} can be expressed as the product of a number in A and a number in B;
- each prime number is a divisor of some number in A and also some number in B;
- one of the sets A and B has the following property: if the numbers in this set are written as $x_{1}<x_{2}<x_{3}<\cdots$, then for any given positive integer M there exists $k \in \mathbb{N}$ such that $x_{k+1}-x_{k} \geq M$.
- Each set has infinitely many composite numbers.

